...
首页> 外文期刊>PLoS Computational Biology >Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation
【24h】

Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation

机译:基于约束的Shewanella Inidensis MR-1代谢模型:一种数据分析和假设产生的工具

获取原文
           

摘要

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems level.
机译:Shewanellae是革兰阴性的突破性厌氧金属还原细菌,常见于化学(即氧化还原)分层环境。占领这些利基需要能够迅速适应电子供体/受体类型和可用性的变化;因此,在这种环境中竞争和茁壮成长的能力必须最终反映在电子转移网络的组织和利用中,以及中枢和外周碳代谢。要了解Shewanella onidensis MR-1如何利用其资源,重建代谢网络。得到的网络由774个反应,783个基因和634个独特的代谢物组成,并且含有所有细胞成分的生物合成途径。使用基于约束的建模,我们研究了S.Inidensis MR-1对众多碳源的有氧生长。为此,我们(i)使用实验数据来制定生物质方程和估计蜂窝ATP要求,(ii)开发了一种识别循环(如徒劳循环和循环)的方法,(iii)分类是如何影响细胞生长的反应(IV)预测细胞生物质在不同的碳源上产生,并将模型预测与实验测量进行比较,并且(v)使用实验结果,以改善乳酸乳酸生长的代谢势态。结果表明,S.Inidensis MR-1的有氧乳酸细胞使用较少的酶,将电子传输耦合到质子动力产生,并且可能操作至少一个涉及苹果酶的徒劳的循环。提供了几个实例,由此通过实验数据验证模型预测,特别是丝氨酸羟甲基转移酶和甘氨酸切割系统在单碳单元代谢中的作用,以及不同碳和能量的生长。这项工作说明了计算和实验努力的集成如何促进在系统水平对微生物代谢的理解。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号