首页> 外文期刊>Frontiers in Plant Science >Advancing Agricultural Production With Machine Learning Analytics: Yield Determinants for California’s Almond Orchards
【24h】

Advancing Agricultural Production With Machine Learning Analytics: Yield Determinants for California’s Almond Orchards

机译:通过机器学习分析推进农业生产:加州杏仁果园的产量决定因素

获取原文
           

摘要

Agricultural productivity is subject to various stressors, including abiotic and biotic threats, many of which are exacerbated by a changing climate, thereby affecting long-term sustainability. The productivity of tree crops such as almond orchards, is particularly complex. To understand and mitigate these threats requires a collection of multi-layer large data sets, and advanced analytics is also critical to integrate these highly heterogeneous datasets to generate insights about the key constraints on the yields at tree and field scales. Here we used a machine learning approach to investigate the determinants of almond yield variation in California’s almond orchards, based on a unique 10-year dataset of field measurements of light interception and almond yield along with meteorological data. We found that overall the maximum almond yield was highly dependent on light interception, e.g., with each one percent increase in light interception resulting in an increase of 57.9 lbs/acre in the potential yield. Light interception was highest for mature sites with higher long term mean spring incoming solar radiation (SRAD), and lowest for younger orchards when March maximum temperature was lower than 19°C. However, at any given level of light interception, actual yield often falls significantly below full yield potential, driven mostly by tree age, temperature profiles in June and winter, summer mean daily maximum vapor pressure deficit (VPD _(max)), and SRAD. Utilizing a full random forest model, 82% (±1%) of yield variation could be explained when using a sixfold cross validation, with a RMSE of 480 ± 9 lbs/acre. When excluding light interception from the predictors, overall orchard characteristics (such as age, location, and tree density) and inclusive meteorological variables could still explain 78% of yield variation. The model analysis also showed that warmer winter conditions often limited mature orchards from reaching maximum yield potential and summer VPD _(max) beyond 40 hPa significantly limited the yield. Our findings through the machine learning approach improved our understanding of the complex interaction between climate, canopy light interception, and almond nut production, and demonstrated a relatively robust predictability of almond yield. This will ultimately benefit data-driven climate adaptation and orchard nutrient management approaches.
机译:农业生产力受到各种压力源的影响,包括非生物和生物威胁,其中许多气候加剧,从而影响了长期可持续性。树木农作物如杏仁果园,特别是复杂的。要了解和减轻这些威胁,需要集合多层大数据集,并且高级分析对于集成这些高度异构的数据集是至关重要的,以生成关于树和现场比例的产量的关键约束的洞察力。在这里,我们利用机器学习方法来研究加州杏仁果园的杏仁产量变异的决定因素,基于光拦截和杏仁产量的现场测量的独特10年数据集以及气象数据。我们发现,总体上最大杏仁产量高度依赖于轻截止光截止,例如,每一个百分比增加光拦截导致潜在产量增加57.9磅/英亩。对于具有较高长期平均传入的太阳辐射(SRAD)的成熟网站,光线拦截最高,并且当3月最高温度低于19°C时,果园的最低果园最低。但是,在任何给定水平的光截取水平时,实际产量通常均低于完全的产量潜力,主要是由树龄,6月和冬季的温度曲线驱动,夏季平均最大蒸气压(VPD _(MAX))和SRAD 。利用全随机森林模型,使用六倍交叉验证时,可以解释82%(±1%)的屈服变化,RMSE为480±9磅/英亩。当从预测器中排除光线拦截时,整体果园特征(例如年龄,位置和树密度)和包容性气象变量仍然可以解释屈服变化的78%。模型分析还表明,温暖的冬季条件往往有限的成熟果园从达到最大产量潜力和夏季VPD _(MAX)超过40 HPA显着限制了产量。我们通过机器学习方法的调查结果改善了我对气候,冠层光截止和杏仁螺母生产之间复杂的相互作用的理解,并证明了杏仁产量的相对稳健的可预测性。这将最终利用数据驱动的气候适应和果园营养管理方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号