...
首页> 外文期刊>Frontiers in Molecular Biosciences >Evidence for Disruption of Mg2+ Pair as a Resistance Mechanism Against HIV-1 Integrase Strand Transfer Inhibitors
【24h】

Evidence for Disruption of Mg2+ Pair as a Resistance Mechanism Against HIV-1 Integrase Strand Transfer Inhibitors

机译:MG2 +对作为对HIV-1整合酶链转移抑制剂的抗性机制的探测

获取原文
   

获取外文期刊封面封底 >>

       

摘要

HIV-1 integrase is the enzyme responsible for integrating the viral DNA into the host genome, and is one of the main targets for antiretroviral therapy; however, there are documented cases of resistance against all the currently used integrase strand transfer inhibitors (INSTIs). While some resistance-related mutations occur near the inhibitor’s binding site, the mutation N155H occurs on the opposite side of the drug-interacting Mg2+ ions, thus, not interacting directly with the drug molecules, and currently lacking an explanation for its resistance mechanism. Moreover, mutation N155H and the resistance-related mutation Q148H are mutually exclusive for unknown reasons. In the present study, we use molecular dynamics simulations to understand the impact of the N155H mutation in the HIV-1 integrase structure and dynamics, when alone or in combination with Q148H. Our findings suggest that the Mg2+ ions of the active site adopt different orientations in each of the mutants, causing the catalytic triad residues involved in the ion coordination to adapt their side-chain configurations, completely changing the INSTIs binding site. The change in the ion coordination also seems to affect the flexibility of the terminal viral DNA nucleotide near the active site, potentially impairing the induced-fit mechanism of the drugs. The explanations obtained from our simulations corroborate previous hypotheses drawn from crystallographic studies. The proposed resistance mechanism can also explain the resistance caused by other mutations that take place in the same region of the integrase and help uncover the structural details of other HIV-1 resistance mechanisms.
机译:HIV-1整合酶是负责将病毒DNA集成到宿主基因组中的酶,是抗逆转录病毒治疗的主要靶标之一;然而,有记录的抵抗抵抗案例,对所有目前使用的整体链转移抑制剂(Instis)。虽然在抑制剂的结合位点附近发生一些抗性相关的突变,但是在药物相互作用的Mg 2 +离子的相对侧发生突变N155H,因此不会直接与药物分子相互作用,并且目前缺乏对其抗性机制的解释。此外,出于未知原因,突变N155H和抗性相关突变Q148H是互斥的。在本研究中,我们使用分子动力学模拟来了解N155H突变在HIV-1整合酶结构和动力学中的影响,单独或与Q148H组合。我们的研究结果表明,活性位点的Mg2 +离子在每个突变体中采用不同的取向,导致涉及离子配位的催化三合会残基以适应它们的侧链构型,完全改变instis结合位点。离子协调的变化也似乎影响了终端病毒DNA核苷酸在活性位点附近的灵活性,可能损害药物的诱导机制。从我们的模拟获得的解释证实了从晶体研究中汲取的先前假设。该抗性机制还可以解释由在整体酶的同一区域中发生的其他突变引起的阻力,并帮助揭示其他HIV-1电阻机制的结构细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号