...
首页> 外文期刊>AIP Advances >Density functional theory study on the catalytic degradation mechanism of polystyrene
【24h】

Density functional theory study on the catalytic degradation mechanism of polystyrene

机译:聚苯乙烯催化降解机理的密度函数理论研究

获取原文

摘要

The density functional theory method of B3LYP/6-311G(d) was used to study two catalytic degradation (acid-catalyzed and alkali-catalyzed) reaction mechanisms of polystyrene (PS). The geometric structure optimization and frequency calculations of all the molecules involved in the catalytic degradation were performed, and the standard thermodynamic parameters of each catalytic cracking path were obtained. The calculation results show that the energy barrier of the optimal reaction path’s rate control step to form styrene monomer is 68.2 kJ/mol in the alkali-catalyzed degradation reaction paths. In the acid-catalyzed cracking paths, the energy barrier of the optimal path’s rate control step to form styrene is 151.9 kJ/mol. The energy barriers of rate control steps for the formation of styrene monomer in both types of these catalytic cracking reactions are lower than those for other products, so the main degradation product in the two types of catalytic degradation is styrene monomer. Compared with pure thermal degradation, an obvious feature of acid-catalyzed degradation is the formation of benzene, indene, and derivatives of indene. The formation of benzene reduces the phenyl content of the PS main chain, which results in a reduction in the yield of styrene monomer. However, an alkali catalyst shows a positive catalytic effect, which increases the yield of styrene monomer.
机译:B3LYP / 6-311G(D)的密度官能理论方法用于研究聚苯乙烯(PS)的两个催化降解(酸催化和碱催化)反应机制。进行了催化降解所涉及的所有分子的几何结构优化和频率计算,得到每个催化裂化路径的标准热力学参数。计算结果表明,在碱催化的降解反应路径中,最佳反应路径速率控制步骤的能量屏障在苯乙烯单体形成苯乙烯单体中为68.2kJ / mol。在酸催化的裂化路径中,最佳路径速率控制步骤的能量屏障形成苯乙烯是151.9kJ / mol。在两种类型的这些催化裂化反应中形成苯乙烯单体的速率控制步骤的能量障碍低于其他产品,因此两种类型的催化降解中的主要降解产物是苯乙烯单体。与纯热降解相比,酸催化降解的明显特征是苯苯,茚和茚的衍生物的形成。苯的形成降低了PS主链的苯基含量,这导致苯乙烯单体的产率降低。然而,碱催化剂显示出阳性催化作用,这增加了苯乙烯单体的产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号