首页> 外文期刊>Aerospace >Numerical and Experimental Investigation of the Design of a Piezoelectric De-Icing System for Small Rotorcraft Part 1/3: Development of a Flat Plate Numerical Model with Experimental Validation
【24h】

Numerical and Experimental Investigation of the Design of a Piezoelectric De-Icing System for Small Rotorcraft Part 1/3: Development of a Flat Plate Numerical Model with Experimental Validation

机译:小旋翼机第1/3部分压电去冰系统设计的数值和实验研究:实验验证平板数值模型的开发

获取原文
           

摘要

The objective of this research project is divided in four parts: (1) to design a piezoelectric actuator-based de-icing system integrated to a flat plate experimental setup and develop a numerical model of the system with experimental validation, (2) use the experimental setup to investigate actuator activation with frequency sweeps and transient vibration analysis, (3) add ice layer to the numerical model and predict numerically stresses for different ice breaking with experimental validation, and (4) bring the concept to a blade structure for wind tunnel testing. This paper presents the first objective of this study. First, preliminary numerical analysis was performed to gain basic guidelines for the integration of piezoelectric actuators in a simple flat plate experimental setup for vibration-based de-icing investigation. The results of these simulations allowed to optimize the positioning of the actuators on the structure and the optimal phasing of the actuators for mode activation. A numerical model of the final setup was elaborated with the piezoelectric actuators optimally positioned on the plate and meshed with piezoelectric elements. A frequency analysis was performed to predict resonant frequencies and mode shapes, and multiple direct steady-state dynamic analyses were performed to predict displacements of the flat plate when excited with the actuators. In those steady-state dynamic analysis, electrical boundary conditions were applied to the actuators to excite the vibration of the plate. The setup was fabricated faithful to the numerical model at the laboratory with piezoelectric actuator patches bonded to a steel flat plate and large solid blocks used to mimic perfect clamped boundary condition. The experimental setup was brought at the National Research Council Canada (NRC) for testing with a laser vibrometer to validate the numerical results. The experimental results validated the model when the plate is optimally excited with an average of error of 20% and a maximal error obtained of 43%. However, when the plate was not efficiently excited for a mode, the prediction of the numerical data was less accurate. This was not a concern since the numerical model was developed to design and predict optimal excitation of structures for de-icing purpose. This study allowed to develop a numerical model of a simple flat plate and understand optimal phasing of the actuators. The experimental setup designed is used in the next phase of the project to study transient vibration and frequency sweeps. The numerical model is used in the third phase of the project by adding ice layers for investigation of vibration-based de-icing, with the final objective of developing and integrating a piezoelectric actuator de-icing system to a rotorcraft blade structure.
机译:本研究项目的目的分为四部分:(1)设计了集成的压电执行器的脱冰系统集成到平板实验设置,并使用实验验证开发系统的数值模型,(2)使用实验设置以调查频率扫描和瞬态振动分析的执行器激活,(3)将冰层添加到数值模型中,并预测不同冰块与实验验证的数值应力,(4)将概念带入风洞的刀片结构测试。本文提出了本研究的第一个目标。首先,进行初步数值分析,以获得基于振动的脱落研究的简单平板实验设置中压电执行器集成的基本指导。这些模拟的结果允许优化执行器对模式激活的结构和致动器的最佳分阶段的定位。用最佳定位在板上的压电致动器并用压电元件啮合来阐述最终设置的数值模型。进行频率分析以预测共振频率和模式形状,并且执行多种直接稳态动态分析以预测与致动器激发时平板的位移。在那些稳态动态分析中,将电气边界条件施加到致动器中以激发板的振动。该设置符合实验室的数值模型,用压电致动器贴片粘合到钢平板和用于模仿完美夹紧边界条件的大型固体块。实验设置是在加拿大国家研究委员会(NRC)的采用,用于使用激光振动器进行测试,以验证数值结果。实验结果验证了板材最佳激发时的模型,平均误差为20%,最大误差为43%。然而,当为模式没有有效激发板时,数值数据的预测不太准确。这不是一个问题,因为该数值模型是开发的,以设计和预测结构的最佳激励以进行解冰目的。本研究允许开发一个简单的平板的数值模型,并了解致动器的最佳相位。设计的实验设置用于项目的下一阶段,以研究瞬态振动和频率扫描。通过添加覆盖型振动的去冰的冰层来在项目的第三阶段中使用数值模型,最终目的是开发和集成压电致动器去冰系统到旋翼飞机刀片结构的最终目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号