首页> 外文期刊>ACS Omega >Atomistic Molecular Dynamics Simulations of Propofol and Fentanyl in Phosphatidylcholine Lipid Bilayers
【24h】

Atomistic Molecular Dynamics Simulations of Propofol and Fentanyl in Phosphatidylcholine Lipid Bilayers

机译:磷脂基胆碱脂质双层脂质双二苯酚和芬太尼的原子分子动力学模拟

获取原文
获取外文期刊封面目录资料

摘要

Atomistic molecular dynamics (MD) and steered MD simulations in combination with umbrella sampling methodology were utilized to study the general anesthetic propofol and the opioid analgesic fentanyl and their interaction with lipid bilayers, which is not yet fully understood. These molecules were inserted into two different fully hydrated phospholipid bilayers, namely, dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC), to investigate the effects that these drugs have on the bilayer. We determined the role of the lipid chain length and saturation on the behavior of the two drugs. Pure, fully hydrated DOPC and DPPC bilayers were also simulated, and the results were in excellent agreement with the experimental values. Various structural and mechanical properties of each system, such as the area per lipid, area compressibility modulus, order parameter, lateral lipid diffusion, hydrogen bonds, and radial distribution functions, have been calculated to assess how the drug molecules affect the different bilayers. From the calculated results, we show that fentanyl and propofol generally follow similar trends in each bilayer but adopt different favorable positions close to the headgroup/chain interface at the carbonyl groups. Propofol was shown to selectively form hydrogen bonds at the carbonyl carbon in each bilayer, whereas fentanyl interacts with water molecules at the headgroup interface. From the calculated free-energy profiles, we determined that both molecules show a preference for the low-density, low-order acyl chain region of the bilayers and both significantly preferred the DOPC bilayer with propofol and fentanyl having energy minima at ?6.66 and ?43.07 kcal mol~(–1), respectively. This study suggests that different chain lengths and levels of saturation directly affect the properties of these two important molecules, which are seen to work together to control anesthesia in surgical applications.
机译:使用与伞采样方法组合的原子分子动力学(MD)和转向MD模拟用于研究一般麻醉异丙酚和阿片类镇痛芬太尼与脂质双层的相互作用,尚未完全理解。将这些分子插入两种不同的完全水合磷脂双层,即Diole酰基磷脂酰胆碱(DOPC)和Dipa​​lmitoylpholinylcholine(DPPC),以研究这些药物对双层的影响。我们确定了脂链长度和饱和对两种药物的行为的作用。还模拟了纯净,完全水性的DOPC和DPPC双层,结果与实验值非常一致。已经计算了每个系统的各种结构和机械性能,例如每个脂质,面积可压缩性模量,订单参数,横向脂质扩散,氢键和径向分布功能,以评估药物分子如何影响不同的双层。从计算结果中,我们表明芬太尼和异丙酚通常遵循每个双层的相似趋势,而是采用靠近羰基的头组/链界面的不同良好位置。示出了异丙酚在每个双层的羰基碳中选择性地形成氢键,而芬太尼与在头组界面处的水分子相互作用。从计算出的自由能型材中,我们确定两个分子表现出双层的低密度,低阶酰基链区的偏好,并且两者都明显优选具有β6.66的能量最小值的异丙酚和芬太尼的DOPC双层。 43.07 kcal mol〜(-1)。该研究表明,不同的链长度和饱和水平直接影响这两个重要分子的性质,这些分子被认为一起用于控制手术应用中的麻醉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号