首页> 外文期刊>Computational intelligence and neuroscience >Driving Fatigue Detection from EEG Using a Modified PCANet Method
【24h】

Driving Fatigue Detection from EEG Using a Modified PCANet Method

机译:使用修改后的PCANet方法从EEG驱动疲劳检测

获取原文

摘要

The rapid development of the automotive industry has brought great convenience to our life, which also leads to a dramatic increase in the amount of traffic accidents. A large proportion of traffic accidents were caused by driving fatigue. EEG is considered as a direct, effective, and promising modality to detect driving fatigue. In this study, we presented a novel feature extraction strategy based on a deep learning model to achieve high classification accuracy and efficiency in using EEG for driving fatigue detection. EEG signals were recorded from six healthy volunteers in a simulated driving experiment. The feature extraction strategy was developed by integrating the principal component analysis (PCA) and a deep learning model called PCA network (PCANet). In particular, the principal component analysis (PCA) was used to preprocess EEG data to reduce its dimension in order to overcome the limitation of dimension explosion caused by PCANet, making this approach feasible for EEG-based driving fatigue detection. Results demonstrated high and robust performance of the proposed modified PCANet method with classification accuracy up to 95%, which outperformed the conventional feature extraction strategies in the field. We also identified that the parietal and occipital lobes of the brain were strongly associated with driving fatigue. This is the first study, to the best of our knowledge, to practically apply the modified PCANet technique for EEG-based driving fatigue detection.
机译:汽车行业的快速发展为我们的生活带来了极大的便利,这也导致交通事故的巨大增加。大部分交通事故是由驾驶疲劳引起的。 EEG被认为是一种直接,有效和有希望的方式来检测驾驶疲劳。在这项研究中,我们介绍了一种基于深度学习模型的新颖特征提取策略,以实现利用脑电图来实现疲劳检测的高分类精度和效率。在模拟驾驶实验中,从六个健康的志愿者记录EEG信号。通过集成主成分分析(PCA)和称为PCA网络(PCANet)的深层学习模型来开发特征提取策略。特别是,主要成分分析(PCA)用于预处理EEG数据以减少其尺寸,以克服PCANet引起的尺寸爆炸的限制,使得这种方法可用于基于EEG的驱动疲劳检测。结果表明,所提出的修改的PCANet方法具有高达95%的修改式PCANET方法的高且稳健性能,这优于该领域的常规特征提取策略。我们还确定大脑的顶叶和枕叶与驾驶疲劳有关。这是首次研究,据我们所知,实际上适用于基于EEG的驱动疲劳检测的改进的PCANet技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号