首页> 外文期刊>BMC Evolutionary Biology >The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle
【24h】

The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

机译:真核果糖-1,6-双磷酸酶和SEDOHEPHEXTALOS-1,7-双磷酸酶的独立原核起源以及它们起源对真核钙循环的演变的影响

获取原文
           

摘要

In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition “from specialist to generalist”. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.
机译:在掌上的Calvin循环中,果糖-1,6-双磷酸盐(FBP)和Sedoheptulose-1,7-双磷酸盐(SBP)的脱磷酸化由相同的双官能酶:果糖-1,6-双磷酸酶/ Sedoheplease催化 - 1,7-双磷酸酶(F / SBPase),同时通过两种不同酶的真核叶绿体:氯塑料果糖-1,6-双磷酸酶(FBP酶)和Sedoheptulase-1,7-双磷酸酶(SBPase)。提出,这两种真核酶从微粒源的常见祖先密堂外离双官能F / SBPase的分歧产生。然而,在先前的系统发育分析中,可以观察到SBPase和引理FBPase或F / SBPase之间的特异性亲和力,并且很难解释为什么根据这种情况,来自大多数现存的非分类学真核生物不存在SBPase和/或F / SBPase 。结构域分析表明,两种不同资源的有义性F / SBPase含有不同的结构域:植物F / SBP酶含有典型的FBP酶域,而蓝藻F / SBP酶具有FBPase_GLPX结构域。因此,如原核FBPase,引理F / SBPase也可以分为两个进化的远处等级(I类和II类)。基于较大的分类样本的系统发育分析比以前的工作揭示所有真核SBPase集群在一起并形成一个亲密的姐妹组到ε-植物类血糖类I FBPase的疏皮症,它们是葡糖生成特异性酶,而所有真核叶绿体FBPPase组合在一起真核细胞溶质FBPase并形成另一个不同的枝条,然后用不同的释放的I类FBPase组成。对这些酶的基序分析也支持这些系统发育相关性。有两种进化的远处的引导性双官能F / SBPase等级。真核fbpase和sbpase从其中任何一个都不会分歧,但有两个独立的起源:sbpase与嗜糖素 - 猕猴(或可能源于epsilon-proteobacteria的祖先)的葡糖生特异性类Fbpase分享一个共同的祖先FBPase来自I类FBPase的一种未知种类的噬菌体。在来自密集类FBPase的SBPase的演变过程中,通过“从专家到通用”的转变获得了SBP去磷酸化活性。通过两个光调节基质特异性酶的硫生物 - 原毒间双功能F / SBPase的进化取代使得钙氏循环的调节更精细,这导致了真核光合作用的演变,甚至是整个光合真核生物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号