首页> 外文期刊>BMC Evolutionary Biology >The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle
【24h】

The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

机译:真核果糖-1、6-双磷酸酶和sedoheptulose-1、7-双磷酸酶的独立原核起源及其对真核卡尔文循环进化的影响

获取原文
           

摘要

Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP) and sedoheptulose-1, 7-bisphosphate (SBP) are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase), while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase) and sedoheptulose-1, 7-bisphosphatase (SBPase), respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II). Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins: SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria), while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition “from specialist to generalist”. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.
机译:背景技术在真细菌的加尔文循环中,果糖-1、6-双磷酸(FBP)和七肽-1、7-双磷酸(SBP)的脱磷酸作用均由相同的双功能酶催化:果糖-1、6-双磷酸酶/七聚葡萄糖-1,7-双磷酸酶(F / SBPase),而在真核叶绿体中则由两种不同的酶组成:叶绿体果糖1,6-双磷酸酶(FBPase)和sedoheptulose-1,7-双磷酸酶(SBPase)。有人提出这两种真核酶起源于线粒体起源的共同祖先真细菌双功能F / SBPase。但是,在以前的系统发育分析中,未观察到SBPase与真细菌FBPase或F / SBPase之间的特异性亲和力,并且很难解释在这种情况下大多数现存的非光合真核生物中为何不存在SBPase和/或F / SBPase。 。结果域分析表明,两种不同资源的真细菌F / SBPase包含不同的域:蛋白酶F / SBPases包含典型的FBPase域,而蓝细菌F / SBPaase则具有FBPase_glpX域。因此,与原核FBPase一样,真细菌F / SBPase也可以分为两个进化上相距遥远的类(I类和II类)。系统发育分析基于比以前更大的分类学抽样,发现所有真核生物SBPase聚集在一起,并与糖原异生性特异性酶I型蛋白水解细菌I类FBPase进化枝形成紧密的亲缘关系,而所有真核叶绿体FBPase组与真核细胞质FBPase并形成另一个独特的进化枝,然后与多种真细菌的I类FBPase结合在一起。这些酶的基序分析也支持这些系统发育相关性。结论有两类进化上距离较远的真细菌双功能F / SBPase。真核FBPase和SBPase两者没有区别,但有两个独立的来源:SBPase与ε-变形蛋白细菌的糖原异生性I类FBPase有共同的祖先(或可能起源于ε-变形细菌的祖先)。 FBPase源自未知真细菌的I类FBPase。在从I类真细菌FBPase进化SBPase的过程中,通过“从专家到通才”的转变获得了SBP的去磷酸化活性。内在共生起源的蓝细菌双功能F / SBPase在进化上被两种受光调节的底物特异性酶取代,从而使Calvin循环的调控更加精细,从而促进了真核生物光合作用甚至整个光合作用的真核生物的进化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号