首页> 外文期刊>IEEE Journal on Miniaturization for Air and Space Systems >Multiclass Object Detection in UAV Images Based on Rotation Region Network
【24h】

Multiclass Object Detection in UAV Images Based on Rotation Region Network

机译:基于旋转区域网络的UAV图像中的多级对象检测

获取原文
获取原文并翻译 | 示例

摘要

The object detection in UAV application is a challenging task due to the diversity of target scales, variation of views, and complex backgrounds. To solve several challenges, including dense objects, objects with arbitrary orientation, and diversity of aspect ratios, this article proposes an end-to-end object detection method based on the convolutional neural network. In this article, the feature extraction performance is enhanced by utilizing a deep residual neural network. Multiscale feature maps are obtained through fusion with different convolutional layers, thus combining the high-level semantic information and low-level detail information. A rotation region proposal network is adopted to generate rotated regions, which makes the bounding box sensitive to dense objects in aerial images. Meanwhile, the RoIAlign is used and a convolution layer is appended in the classification stage, and focal loss is used in the classification stage. The proposed method focuses on arbitrary-oriented and dense objects in UAV images. After a comprehensive evaluation with several state-of-the-art object detection algorithms, the proposed method is proved to be effective to detect multiclass artificial objects in aerial images. Extensive experiments are conducted on the DOTA, VEDAI, and the VisDrone UAV image datasets, which demonstrate that the proposed method can obtain discriminative features through the improved multiscale feature extraction and the rotating region network. The results on the above datasets show that our method obtains gains in mean average precision compared with several state-of-the-art methods.
机译:由于目标尺度的多样性,视图的变化和复杂背景,对象检测是一个具有挑战性的任务。为了解决几种挑战,包括致密物体,具有任意取向的对象,以及宽高比的多样性,本文提出了一种基于卷积神经网络的端到端物体检测方法。在本文中,通过利用深度剩余神经网络来增强特征提取性能。通过使用不同的卷积层融合来获得多尺度特征贴图,从而组合高级语义信息和低级详细信息。采用旋转区域提案网络来产生旋转区域,这使得与空中图像中的密集物体敏感的边界框。同时,使用roIalign,并且在分类阶段附加卷积层,并且在分类阶段使用焦损。所提出的方法侧重于UAV图像中的任意定向和密集的对象。在用多个最先进的对象检测算法进行综合评估之后,所提出的方法被证明是有效地检测航空图像中的多磅人造物体。在DotA,Vedai和Vistrone UAV图像数据集上进行了广泛的实验,这表明所提出的方法可以通过改进的多尺度特征提取和旋转区域网络获得鉴别特征。上述数据集的结果表明,与多种最先进的方法相比,我们的方法以平均平均精度获得增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号