首页> 外文期刊>IEEE Internet of Things Magazine >DeepDist: A Deep-Learning-Based IoV Framework for Real-Time Objects and Distance Violation Detection
【24h】

DeepDist: A Deep-Learning-Based IoV Framework for Real-Time Objects and Distance Violation Detection

机译:Deaddist:基于深度学习的IOV框架,用于实时对象和距离违规检测

获取原文
获取原文并翻译 | 示例

摘要

Crowd management systems play a vital role in today's smart cities and rely on several Internet of Things (IoT) solutions to build prevention mechanisms for widespread viral diseases such as Coronavirus 2019 (COVID-19). In this article, we propose a framework to aid in preventing widespread viral diseases. The proposed framework consists of a physical distancing notification system by leveraging some existing futuristic technologies, including deep learning and the Internet of Vehicles. Each vehicle is equipped with a switching camera system through thermal and vision imaging. Afterward, using the Faster R-CNN algorithm, we measure and detect physical distancing violation between objects of the same class. We evaluate the performance of our proposed architecture with vehicle-to-infrastructure communication. The obtained results show the applicability and efficiency of our proposal in providing timely notification of social distancing violations.
机译:人群管理系统在今天的智能城市中发挥着至关重要的作用,并依靠几个物联网(物联网)解决方案,以建立冠状病毒疾病(如Covid-19)等普遍的病毒疾病的预防机制。在本文中,我们提出了一个框架,以帮助预防普遍的病毒疾病。拟议的框架通过利用一些现有的未来派技术来组成了物理疏远通知系统,包括深入学习和车辆互联网。每辆车都配备有热量和视觉成像的开关摄像头系统。之后,使用更快的R-CNN算法,我们测量并检测同一类对象之间的物理疏远违规。我们评估了我们提出的架构与基于基础设施通信的表现。获得的结果表明我们提案的适用性和效率,以便及时通知社会疏散违规行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号