首页> 外文期刊>Scientific reports. >Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach
【24h】

Landmark detection in 2D bioimages for geometric morphometrics: a multi-resolution tree-based approach

机译:用于几何形态计量学的2D生物图像中的地标检测:基于树的多分辨率方法

获取原文

摘要

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify the key method parameters (notably the multi-resolution) and report results with respect to human ground truths and existing methods. Our method achieves recognition performances competitive with current existing approaches while being generic and fast. The algorithms are integrated in the open-source Cytomine software and we provide parameter configuration guidelines so that they can be easily exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future research.
机译:在许多研究领域中,生物图像中解剖标志的检测是几何形态计量学研究中必不可少但繁琐的步骤。我们提出了一种基于多分辨率树的方法的变体,以加快生物图像中地标的检测。我们在三个不同的数据集(头部测量,斑马鱼和果蝇图像)上广泛评估了我们的方法变体。我们确定方法的关键参数(特别是多分辨率),并报告有关人为事实和现有方法的结果。我们的方法在通用且快速的同时,获得了与现有方法竞争的识别性能。这些算法已集成在开源Cytomine软件中,并且我们提供了参数配置指南,因此最终用户可以轻松利用它们。最后,可以通过Cytomine服务器轻松获得数据集,以促进未来的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号