首页> 外文期刊>Journal of bacteriology >Growth Phase- and Cell Division-Dependent Activation and Inactivation of the σ32 Regulon in Escherichia coli
【24h】

Growth Phase- and Cell Division-Dependent Activation and Inactivation of the σ32 Regulon in Escherichia coli

机译:大肠杆菌中σ32调节子的生长期和细胞分裂依赖性激活和灭活

获取原文
           

摘要

Alternative sigma factors allow bacteria to reprogram global transcription rapidly and to adapt to changes in the environment. Here we report on growth- and cell division-dependent σ32 regulon activity in Escherichia coli in batch culture. By analyzing σ32 expression in growing cells, an increase in σ32 protein levels is observed during the first round of cell division after exit from stationary phase. Increased σ32 protein levels result from transcriptional activation of the rpoH gene. After the first round of bulk cell division, rpoH transcript levels and σ32 protein levels decrease again. The late-logarithmic phase and the transition to stationary phase are accompanied by a second increase in σ32 levels and enhanced stability of σ32 protein but not by enhanced transcription of rpoH. Throughout growth, σ32 target genes show expression patterns consistent with oscillating σ32 protein levels. However, during the transition to early-stationary phase, despite high σ32 protein levels, the transcription of σ32 target genes is downregulated, suggesting functional inactivation of σ32. It is deduced from these data that there may be a link between σ32 regulon activity and cell division events. Further support for this hypothesis is provided by the observation that in cells in which FtsZ is depleted, σ32 regulon activation is suppressed.
机译:替代的sigma因子使细菌能够快速重新编程全局转录并适应环境的变化。在这里,我们报告了分批培养的大肠杆菌中依赖于生长和细胞分裂的σ 32 调节子活性。通过分析生长细胞中σ 32 的表达,从稳定期退出后的第一轮细胞分裂过程中,观察到σ 32 蛋白水平的增加。 σ 32 蛋白水平升高是由于 rpoH 基因的转录激活所致。在第一轮大细胞分裂后, rpoH 转录水平和σ 32 蛋白水平再次降低。对数晚期和向平稳期的过渡伴随着σ 32 水平的第二次升高和σ 32 蛋白的稳定性的增强,但不伴随 rpoH 。在整个生长过程中,σ 32 靶基因的表达模式与σ 32 蛋白质的振荡水平一致。然而,在过渡到早期平稳期的过程中,尽管σ 32 蛋白水平较高,但σ 32 目标基因的转录却被下调,表明σ的功能失活32 。从这些数据可以推断出σ 32 调节子活性与细胞分裂事件之间可能存在联系。通过观察发现,在FtsZ耗尽的细胞中,σ 32 regulon激活被抑制,这一发现进一步支持了这一假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号