...
首页> 外文期刊>Journal of cell biology >The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy.
【24h】

The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy.

机译:膜片钳膜的结构和动力学:使用微分干涉对比光学显微镜的研究。

获取原文
           

摘要

We have developed techniques for micromanipulation under high power video microscopy. We have used these to study the structure and motion of patch-clamped membranes when driven by pressure steps. Patch-clamped membranes do not consist of just a membrane, but rather a plug of membrane-covered cytoplasm. There are organelles and vesicles within the cytoplasm in the pipette tip of both cell-attached and excised patches. The cytoplasm is capable of active contraction normal to the plane of the membrane. With suction applied before seal formation, vesicles may be swept from the cell surface by shear stress generated from the flow of saline over the cell surface. In this case, patch recordings are made from membrane that was not originally present under the tip. The vesicles may break, or fuse and break, to form the gigasealed patch. Patch membranes adhere strongly to the wall of the pipette so that at zero transmural pressure the membranes tend to be normal to the wall. With transmural pressure gradients, the membranes generally become spherical; the radius of curvature decreasing with increasing pressure. Some patches have nonuniform curvature demonstrating that forces normal to the membrane may be significant. Membranes often do not respond quickly to changes in pipette pressure, probably because viscoelastic cytoplasm reduces the rate of flow through the tip of the pipette. Inside-out patches may be peeled from the walls of the pipette, and even everted (with positive pressure), without losing the seal. This suggests that the gigaseal is a distributed property of the membrane-glass interface.
机译:我们已经开发了在高功率视频显微镜下进行显微操作的技术。我们已经使用它们来研究在压力步进驱动下膜片夹膜的结构和运动。膜片钳膜不仅仅由膜组成,而是由膜覆盖的细胞质的塞子组成。在贴有细胞的贴片和切下的贴片的移液器尖端的细胞质内都有细胞器和囊泡。细胞质能够垂直于膜平面主动收缩。通过在形成密封之前施加抽吸,囊泡可被盐水在细胞表面上流动而产生的剪切应力从细胞表面清除。在这种情况下,补丁记录是由最初在尖端下方不存在的膜制成的。囊泡可能破裂,或融合并破裂,从而形成千兆糖化的斑块。膜片牢固地粘附在移液器的壁上,因此在透壁压力为零时,膜片往往垂直于壁。在透壁压力梯度下,膜通常变成球形;曲率半径随着压力的增加而减小。一些贴剂具有不均匀的曲率,表明法向于膜的力可能很大。膜通常不会对移液器压力的变化做出快速响应,这可能是因为粘弹性细胞质降低了流经移液器尖端的流速。可以从移液器的壁上剥离掉里里外外的贴片,甚至向外翻卷(在正压力下),而不会失去密封性。这表明,千兆糖是膜-玻璃界面的分布特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号