首页> 外文学位 >Motion analysis and visualization of biological structures imaged via Nomarski differential interference contrast light microscopy.
【24h】

Motion analysis and visualization of biological structures imaged via Nomarski differential interference contrast light microscopy.

机译:通过Nomarski微分干涉对比光学显微镜成像的生物结构的运动分析和可视化。

获取原文
获取原文并翻译 | 示例

摘要

Nomarski differential interference contrast (DIC) light microscopy is an important imaging technique used to study dynamic biological processes, such as cell motility. Advances in the data acquisition capabilities of modern automated microscopes have generated the requirement for similar advances in image processing capabilities to facilitate extraction of relevant information from collected images. For example, in the study of cell motility, specific processing requirements include automated image segmentation, enabling cell shape and motion measurements to be made, and reconstruction of a 3D view of an optically-sectioned specimen from stacks of 2D images. However, the characteristics of DIC images make these tasks difficult to perform. DIC images have a differential appearance which prevents simple image segmentation methods from producing satisfactory results. Additionally, these images are not compatible with existing volume and surface rendering methods, which prevents visualization of 3D data.; This thesis addresses the need for image analysis tools appropriate for use with DIC images. We develop a new active contour model (or snake) algorithm to segment and track multiple, deformable objects through a sequence of 2D images. Our algorithm modifications extend the capabilities of standard active contour models by defining new external forces which enable snakes to detect cells bounded by weak edges, by adapting the snake continuity control parameter values to achieve more flexible snakes, and by developing a new tracking method which handles large motion conditions robustly.; To enable visualization of 3D DIC data, we develop two methods for processing DIC images, generating data that can be rendered with existing software tools. The first method uses a variance filter to emphasize the features of interest in each DIC image. The second method inverts the differential effect of the DIC imaging process, producing data proportional to the local optical path length of a specimen. The data reconstruction is achieved with a directional integration algorithm developed using constrained optimization techniques. While both methods enable observation of a specimen's internal structures, the former algorithm is appropriate for rapid data visualization while the second algorithm is intended for more detailed data analysis.
机译:Nomarski微分干涉对比(DIC)光学显微镜是一种重要的成像技术,用于研究动态生物过程,例如细胞运动。现代自动显微镜的数据采集能力的进步已经产生了对图像处理能力的类似进步的需求,以促进从收集的图像中提取相关信息。例如,在细胞运动研究中,特定的处理要求包括自动图像分割,进行细胞形状和运动测量以及从2D图像堆栈中重建光学切片标本的3D视图。但是,DIC图像的特性使这些任务难以执行。 DIC图像具有差异外观,这会阻止简单的图像分割方法产生令人满意的结果。此外,这些图像与现有的体积和表面渲染方法不兼容,从而无法可视化3D数据。本文解决了需要适合DIC图像使用的图像分析工具的需求。我们开发了一种新的主​​动轮廓模型(或蛇形)算法,以通过一系列2D图像来分割和跟踪多个可变形对象。我们的算法修改通过定义新的外力来扩展标准活动轮廓模型的功能,这些新外力使蛇能够检测由弱边缘限制的单元格,通过调整蛇的连续性控制参数值来获得更灵活的蛇,并开发了一种新的跟踪方法来处理强大的运动条件。为了使3D DIC数据可视化,我们开发了两种处理DIC图像的方法,生成可以使用现有软件工具渲染的数据。第一种方法使用方差滤波器来强调每个DIC图像中感兴趣的特征。第二种方法可以反转DIC成像过程的微分效应,从而产生与标本的局部光路长度成比例的数据。数据重建是通过使用约束优化技术开发的定向集成算法实现的。两种方法都可以观察样品的内部结构,而前一种算法适合于快速数据可视化,而第二种算法则用于更详细的数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号