首页> 外文期刊>Procedia Computer Science >Recovery of Compressed Sampling in Shift-Invariant Spaces Base on L1 Norm
【24h】

Recovery of Compressed Sampling in Shift-Invariant Spaces Base on L1 Norm

机译:基于L1范数的移位不变空间中压缩采样的恢复

获取原文

摘要

Compressed sampling in shift-invariant spaces (SI) is an effective method for sampling of sparse signals. But, reconstruction of compressed sampling may be unstable. In the paper, the possibility of stable reconstruction under a sufficient sparsity is proven. Further, we consider the situation where the minimal L1 norm is used to recover sparse signals from the noisy data. The result shows that they are stable. Finally, we show that the minimal L1 norm through the simulation, and explain the applicability of our algorithm to sampling systems.
机译:不变位移空间(SI)中的压缩采样是一种稀疏信号采样的有效方法。但是,压缩采样的重建可能不稳定。本文证明了在足够稀疏的情况下稳定重建的可能性。此外,我们考虑了使用最小L1范数从噪声数据中恢复稀疏信号的情况。结果表明它们是稳定的。最后,我们通过仿真证明了最小L1范数,并说明了我们的算法对采样系统的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号