首页> 外文期刊>Procedia Computer Science >Data Assimilation of Wildfires with Fuel Adjustment Factors in farsite using Ensemble Kalman Filtering * * This work is funded by NSF 1331615 under CI, Information Technology Research and SEES Hazards programs
【24h】

Data Assimilation of Wildfires with Fuel Adjustment Factors in farsite using Ensemble Kalman Filtering * * This work is funded by NSF 1331615 under CI, Information Technology Research and SEES Hazards programs

机译:使用Ensemble Kalman滤波对远处野火进行燃料调整因子的数据同化 * * 这项工作由NSF 1331615根据CI资助,信息技术研究和SEES危害计划

获取原文

摘要

This paper shows the extension of the wildfire simulation tool FARSITE to allow for data assimilation capabilities on both fire perimeters and fuel adjustment factors to improve the accuracy of wildfire spread predictions. While fire perimeters characterize the overall burn scar of a wildfire, fuel adjustment factors are fuel model specific calibration numbers that adjust the rate of spread for each fuel type independently. Data assimilation updates of both fire perimeters and fuel adjustment factors are calculated from an Ensemble Kalman Filter (EnKF) that exploits the uncertainty information on the simulated fire perimeter, fuel adjustment factors and a measured fire perimeter. The effectiveness of the proposed data assimilation is illustrated on a wildfire simulation representing the 2014 Cocos fire, tracking time varying fuel adjustment factors based on noisy and limited spatial resolution observations of the fire perimeter.
机译:本文展示了野火模拟工具FARSITE的扩展,以允许对火周和燃料调整因子进行数据同化,以提高野火蔓延预测的准确性。尽管火圈是野火的总体烧伤痕迹,但燃料调整因子是特定于燃料模型的校准编号,可独立调整每种燃料类型的扩散率。从Ensemble Kalman滤波器(EnKF)计算出火周和燃料调整因子的数据同化更新,该滤波器利用了模拟火周,燃料调整因子和实测火周的不确定性信息。拟议的数据同化的有效性在代表2014年Cocos火灾的野火模拟中进行了说明,该模型基于对火周界的嘈杂和有限空间分辨率观测,跟踪随时间变化的燃料调整因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号