首页> 外文期刊>Procedia Computer Science >Data Mining and Fusion Techniques for WSNs as a Source of the Big Data
【24h】

Data Mining and Fusion Techniques for WSNs as a Source of the Big Data

机译:WSN作为大数据源的数据挖掘和融合技术

获取原文

摘要

The wide adoption of the Wireless Senor Networks (WSNs) applications around the world has increased the amount of the sensor data which contribute to the complexity of Big Data. This has emerged the need to the use of in-network data processing techniques which are very crucial for the success of the big data framework. This article gives overview and discussion about the state-of-the-art of the data mining and data fusion techniques designed for the WSNs. It discusses how these techniques can prepare the sensor data inside the network (in-network) before any further processing as big data. This is very important for both of the WSNs and the big data framework. For the WSNs, the in-network pre-processing techniques could lead to saving in their limited resources. For the big data side, receiving a clean, non-redundant and relevant data would reduce the excessive data volume, thus an overload reduction will be obtained at the big data processing platforms and the discovery of values from these data will be accelerated.
机译:无线传感器网络(WSN)应用程序在世界范围内的广泛采用增加了传感器数据的数量,这导致了大数据的复杂性。这就需要使用网络内数据处理技术,这对于大数据框架的成功至关重要。本文概述并讨论了为WSN设计的最新数据挖掘和数据融合技术。它讨论了这些技术如何在进一步处理为大数据之前准备好网络内部(网络内)的传感器数据。这对于WSN和大数据框架都非常重要。对于WSN,网络内预处理技术可能导致节省其有限的资源。对于大数据方面,接收干净,非冗余和相关的数据将减少过多的数据量,因此将在大数据处理平台上减少过载,并加快从这些数据中发现值的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号