首页> 外文期刊>Procedia Computer Science >Meso-GSHMC: A stochastic algorithm for meso-scale constant temperature simulations
【24h】

Meso-GSHMC: A stochastic algorithm for meso-scale constant temperature simulations

机译:Meso-GSHMC:用于中尺度恒温模拟的随机算法

获取原文

摘要

We consider the problem of time-stepping/sampling for molecular and meso-scale particle dynamics. The aim of the work is to derive numerical time-stepping methods that generate samples exactly from the desired target temperature distribution. The numerical methods proposed in this paper rely on the well-known splitting of stochastic thermostat equations into conservative and fluctuation-dissipation parts. We propose a methodology to derive numerical approximation to the fluctuation-dissipation part that exactly samples from the underlying Boltzmann distribution.Our methodology applies to Langevin dynamics as well as Dissipative Particle Dynamics and, more generally, to arbitrary position dependent fluctuation-dissipation terms. A Metropolis criterion is introduced to correct for numerical inconsistency in the conservative dynamics part of the model. Shadow energies are used to increase the acceptance rate under the Metropolis criterion. We call the newly proposed method meso-GSHMC.
机译:我们考虑分子和中尺度粒子动力学的时间步进/采样问题。这项工作的目的是推导数字时间步长方法,这些方法可以根据所需的目标温度分布准确地生成样本。本文提出的数值方法依靠将众所周知的随机恒温器方程分解为保守部分和波动耗散部分。我们提出了一种方法,用于从基础Boltzmann分布中精确采样的波动耗散部分得出数值近似值。我们的方法适用于Langevin动力学以及耗散粒子动力学,并且更广泛地适用于任意位置相关的波动耗散项。引入了Metropolis准则以纠正模型的保守动力学部分中的数值不一致。根据都会标准,阴影能量用于提高接受率。我们将新提出的方法称为meso-GSHMC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号