首页> 外文期刊>Procedia - Social and Behavioral Sciences >A Post-processing Technique for the Four-step Travel Demand Modeling Executed Through a Feedback Loop
【24h】

A Post-processing Technique for the Four-step Travel Demand Modeling Executed Through a Feedback Loop

机译:通过反馈回路执行四步旅行需求建模的后处理技术

获取原文

摘要

The four-step travel demand model (FSTDM) is the most widely used technique in practice for estimating traffic flow pattern in the transportation network. Traffic assignment problem (TAP) is a key step of the four-step process that determines the flow pattern which forms the basis for scenario analysis of a transportation improvement project. In many cases, different scenarios may differ by little, but FSTDM may lead to network flows which differ significantly or suggest improvements which are inconsistent with the network situation. This inconsistency arises due to solution noise. There are two main sources of this noise; first, the interdependency between the trip distribution and trip assignment steps of FSTDM, and second, the lower level of convergence in the traffic assignment step. This paper presents a methodology to address the aforementioned two issues by a post-processing technique incorporated through a feedback mechanism in the FSTDM. The post-processing technique consists of SMPA-hybrid, perturbation assignment and Origin-Destination (O-D) prioritization schemes. SMPA- hybrid is an improved implementation of traffic assignment algorithm labeled slope-based multi-path algorithm (SMPA) developed by Kumar and Peeta (2010). There are three methodological contributions of this paper. First, the paper presents an enhanced travel demand modeling framework, second, it formulates a hybrid approach by combining the merits of sequential approach and simultaneous approach of solution algorithms for the TAP, and third, it provides a methodology for the O-D prioritization in TAP. The results of computational experiments suggest that the SMPA-hybrid has a superior rate of convergence compared to the SMPA. The results further reveal that a warm start using perturbation assignment and O-D prioritization has significant benefits over the base case of cold start and non-prioritized implementation of the SMPA-hybrid.
机译:四步出行需求模型(FSTDM)是实践中使用最广泛的技术,用于估算交通网络中的交通流模式。交通分配问题(TAP)是四步过程的关键步骤,该过程确定流模式,这构成了交通改善项目的方案分析的基础。在许多情况下,不同的情况可能略有不同,但是FSTDM可能导致网络流量显着不同或建议进行改进,这与网络情况不符。这种不一致是由于解决方案噪声引起的。这种噪声有两个主要来源:首先,FSTDM的行程分配和行程分配步骤之间的相互依赖性,其次,交通分配步骤中较低的收敛水平。本文提出了一种通过FSTDM中通过反馈机制并入的后处理技术来解决上述两个问题的方法。后处理技术包括SMPA混合,扰动分配和原产地(O-D)优先级排序方案。 SMPA-hybrid是Kumar和Peeta(2010)开发的交通分配算法的改进实现,该算法被标记为基于坡度的多路径算法(SMPA)。本文在方法论上有三点贡献。首先,本文提出了一种改进的旅行需求建模框架,其次,它结合了TAP的顺序算法和同步算法的优点,提出了一种混合方法,其次,它为TAP中的O-D优先排序提供了一种方法。计算实验结果表明,与SMPA相比,SMPA混合算法具有更高的收敛速度。结果进一步表明,使用摄动分配和O-D优先级进行热启动比冷启动和SMPA混合非优先实现的基本情况具有明显优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号