...
首页> 外文期刊>RSC Advances >New instrumentation for large-scale quantitative analysis of components spanning a wide polarity range by column-switching hydrophilic interaction chromatography-turbulent flow chromatography-reversed phase liquid chromatography-tandem mass spectrometry
【24h】

New instrumentation for large-scale quantitative analysis of components spanning a wide polarity range by column-switching hydrophilic interaction chromatography-turbulent flow chromatography-reversed phase liquid chromatography-tandem mass spectrometry

机译:色谱柱切换亲水相互作用色谱-湍流色谱-反相液相色谱-串联质谱法对大范围极性组分进行大规模定量分析的新仪器

获取原文
           

摘要

The achievement of satisfactory chromatographic performance for every component regardless of the polarity plays a pivotal role in large-scale targeted metabolomics of complicated matrices; however, it is almost impossible to achieve comprehensive retention of all hydrophilic and hydrophobic substances by solely employing either hydrophilic interaction chromatography (HILIC) or reversed-phase liquid chromatography (RPLC). Given the great complementarity between HILIC and RPLC, we attempted herein to find a superior instrumentation scheme for their online hyphenation. New instrumentation, namely column-switching HILIC-turbulent flow chromatography-RPLC-tandem mass spectrometry (HILIC-TFC-RPLC-MS/MS) was firstly constructed by employing five solvent pumps, two electronic 6-port/2-channel valves, three columns including an Amide-type HILIC column, an HSS T3-type RP column along with a TFC column, a hybrid triple quadrupole-linear ion trap mass spectrometer (Qtrap-MS), as well as some other essential units. Each analytical run was automatically fragmented into loading (0–4 min) and parallel elution (4–32 min) phases via switching both valves. The TFC column was in charge of trapping apolar compounds from the diluted effluent of the Amide column within the loading phase and subsequently transmitting them into the HSS T3 column according to back-flushing in the parallel elution phase. Chromatographic separations of hydrophobic substances were accomplished on the HSS T3 column, whereas the Amide column took the load of separating the other substances. Qtrap-MS always received both eluents from the HILIC and RP columns. Three existing hyphenated HILIC-RPLC schemes, such as serially coupled RPLC-HILIC, guard column-(HILIC/RPLC), and HILIC-trapping column-RPLC, were involved for comparisons. With the assignment of an optimized elution program for each scheme, HILIC-TFC-RPLC-MS/MS was slightly better than the other ones for large-scale monitoring of polar and apolar components in a mimic compound pool containing 100 components. Above all, the integrated HILIC-TFC-RPLC-MS/MS platform can serve as a feasible choice to gain a holistic view regarding both hydrophilic and hydrophobic components in complicated matrices.
机译:无论极性如何,对每个组分而言,令人满意的色谱性能都将在复杂基质的大规模目标代谢组学中发挥关键作用。但是,仅使用亲水相互作用色谱(HILIC)或反相液相色谱(RPLC)几乎不可能完全保留所有亲水和疏水物质。考虑到HILIC和RPLC之间的巨大互补性,我们在这里尝试为它们的在线断字寻找更好的检测方案。首先采用五个溶剂泵,两个电子6通/ 2通道电子阀,三个电子色谱柱构建了新的仪器,即柱切换HILIC湍流色谱-RPLC串联质谱(HILIC-TFC-RPLC-MS / MS)。色谱柱包括酰胺型HILIC色谱柱,HSS T3型RP色谱柱和TFC色谱柱,混合三重四极杆线性离子阱质谱仪(Qtrap-MS),以及其他一些必要的单元。通过切换两个阀 ,每个分析运行都会自动分为加载阶段(0–4分钟)和并行洗脱阶段(4–32分钟)。 TFC色谱柱负责在装载阶段从酰胺色谱柱的稀释流出物中捕获非极性化合物,然后根据平行洗脱阶段中的反冲洗将其传输到HSS T3色谱柱中。疏水物质的色谱分离是通过HSS T3色谱柱完成的,而酰胺柱则承担了分离其他物质的任务。 Qtrap-MS始终从HILIC和RP色谱柱上接收两种洗脱液。进行比较时,使用了三种现有的带连接符号的HILIC-RPLC方案,例如串行耦合的RPLC-HILIC,保护柱(HILIC / RPLC)和HILIC捕获柱-RPLC。通过为每种方案分配优化的洗脱程序,HILIC-TFC-RPLC-MS / MS可以更好地大规模监测包含100个组分的模拟化合物池中的极性和非极性组分。最重要的是,集成的HILIC-TFC-RPLC-MS / MS平台可以作为一种可行的选择,从而获得有关复杂基质中亲水和疏水成分的整体视图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号