...
首页> 外文期刊>Nature Communications >Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour
【24h】

Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour

机译:具有热力学可逆和结构适应性行为的致密网络玻璃和液体

获取原文
           

摘要

If crystallization can be avoided during cooling, a liquid will display a substantial increase of its viscosity, and will form a glass that behaves as a solid with a relaxation time that grows exponentially with decreasing temperature. Given this ‘off-equilibrium’ nature, a hysteresis loop appears when a cooling/heating cycle is performed across the glass transition. Here we report on molecular dynamics simulations of densified glass-forming liquids that follow this kind of cycle. Over a finite pressure interval, minuscule thermal changes are found, revealing glasses of ‘thermally reversible’ character with optimal volumetric or enthalpic recovery. By analysing the topology of the atomic network structure, we find that corresponding liquids adapt under the pressure-induced increasing stress by experiencing larger bond-angle excursions. The analysis of the dynamic behaviour reveals that the structural relaxation time is substantially reduced in these adaptive liquids, and also drives the reversible character of the glass transition. Ultimately, the results substantiate the notion of stress-free (Maxwell isostatic) rigidity in disordered molecular systems, while also revealing new implications for the topological engineering of complex materials.
机译:如果在冷却过程中可以避免结晶,则液体将显示出粘度的显着增加,并会形成玻璃状的固体,其弛豫时间随温度的降低呈指数增长。鉴于这种“失衡”性质,当在玻璃过渡上执行冷却/加热循环时,会出现一个磁滞回线。在这里,我们报告遵循这种循环的致密玻璃形成液体的分子动力学模拟。在有限的压力间隔内,发现微小的热变化,揭示出具有“热可逆”特性的玻璃,具有最佳的体积或焓恢复率。通过分析原子网络结构的拓扑,我们发现相应的液体通过经历更大的键角偏移而在压力诱导的增加应力下适应。动力学行为分析表明,在这些适应性液体中,结构弛豫时间大大减少,并且还驱动了玻璃化转变的可逆特性。最终,结果证实了无序分子系统中无应力(麦克斯韦等静)刚度的概念,同时也揭示了复杂材料拓扑工程的新含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号