首页> 外文期刊>MATEC Web of Conferences >1D Numerical modelling of dam break using finite element method
【24h】

1D Numerical modelling of dam break using finite element method

机译:用有限元方法对溃坝进行一维数值模拟

获取原文

摘要

In numerical modeling, dam break is one case that has its own challenges, because shock wave is found in the dam break modeling that usually provides a numerical instability. Usually, dam break problem is solved by Saint Venant equation using a finite difference method with artificial dissipation or Total Variation Diminishing (TVD) filter. But in this research, finite element method and the finite difference method are used. To verify the accuracy of the model, a comparison against the Stoker analytical method for dam break case was performed. Numerical modeling of dam break is required to find out the collapse area, thus it is used for determining mitigation that can be done in the area, related to dam safety. In numerical modeling, oscillation or numerical instability often occurs, for which special treatment is required to reduce or eliminate the oscillations. In this research, the treatment for that case is a Hansen filter for both methods. From the simulation result, it is found that Hansen filter is sensitive in reducing oscillation depending on the correction factor value and Δt that used. For dam break case, after filter applied, the value of Pearson Correlation Coefficient of Taylor Galerkin and Mac-Cormack methods are 0.999. The error rate for a Taylor Galerkin method are 0.118% at t = 3s and 0.123% at t = 10s. The error rate for Mac-Cormack method are 0.043% at t = 3s and 5.048% at t = 10s. From the comparison of the model, it can be concluded that Taylor Galerkin finite element method proved to be capable and more accurate in simulating dam break compared to Mac-Cormack finite difference method.
机译:在数值模型中,溃坝是一个有其自身挑战的案例,因为在溃坝模型中发现了冲击波,通常会造成数值不稳定。通常,溃坝问题是通过使用人工耗散或总变化量递减(TVD)滤波器的有限差分法,通过Saint Venant方程来解决的。但是在这项研究中,使用了有限元法和有限差分法。为了验证模型的准确性,与Stoker溃坝案例的分析方法进行了比较。需要大坝溃坝的数值模型来找出倒塌区域,因此,它用于确定在该区域可以进行的与大坝安全有关的缓解措施。在数值建模中,经常会出现振荡或数值不稳定性,为此需要采取特殊措施以减少或消除振荡。在本研究中,针对这两种情况的处理都是使用汉森滤波器。从仿真结果发现,汉森滤波器根据所使用的校正因子值和Δt在减小振荡方面是敏感的。对于溃坝情况,应用滤波器后,Taylor Galerkin和Mac-Cormack方法的Pearson相关系数值为0.999。 Taylor Galerkin方法的错误率在t = 3s时为0.118%,在t = 10s时为0.123%。 Mac-Cormack方法的错误率在t = 3s时为0.043%,在t = 10s时为5.048%。从模型的比较可以得出结论,与Mac-Cormack有限差分法相比,泰勒·加勒金有限元法在模拟溃坝方面是有效的,而且更为精确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号