首页> 外文期刊>MATEC Web of Conferences >k-d Tree-Segmented Block Truncation Coding for Image Compression
【24h】

k-d Tree-Segmented Block Truncation Coding for Image Compression

机译:用于图像压缩的k-d树分段块截断编码

获取原文

摘要

Block truncation coding (BTC) is a class of image compression algorithms whose main technique is the partitioning of an image into pixel blocks that are then each encoded using a representative set of pixel values. It is commonly used because of its simplicity and low computational complexity. The Quadtree-segmented BTC (QTS-BTC), which utilizes a dynamic hierarchical segmentation technique, is among the most efficient in the BTC class. In this study, we propose a new BTC variant that introduces two ideas: (1) the use of a k-d tree for segmentation and (2) the use of a Mean Squared Error (MSE) threshold for dynamically determining the granularity of the blocks. We refer to this new BTC variant as the k-d Tree Segmented BTC (KTS-BTC), and we test this against some of the existing BTC variants by running the algorithms on a standard image compression dataset. The results show that the proposed variant yields low bit rates of the compressed images, even outperforming the state-of-the-art QTS-BTC, without a significant reduction in image quality as measured using the Peak Signal-to-Noise Ratio (PSNR). The utilization of k-d tree for image segmentation is further shown to have more impact than that of employing the MSE thresholding scheme as a block activity classifier.
机译:块截断编码(BTC)是一类图像压缩算法,其主要技术是将图像划分为像素块,然后使用代表像素值集对每个像素块进行编码。由于其简单性和较低的计算复杂度,因此通常使用它。采用动态分层分段技术的四叉树分段BTC(QTS-BTC)是BTC类中效率最高的。在这项研究中,我们提出了一种新的BTC变体,它引入了两种想法:(1)使用k-d树进行分段,以及(2)使用均方误差(MSE)阈值动态确定块的粒度。我们将这个新的BTC变体称为k-d树分段BTC(KTS-BTC),并通过在标准图像压缩数据集上运行算法,针对一些现有的BTC变体进行测试。结果表明,所提出的变体产生的压缩图像的比特率较低,甚至优于最新的QTS-BTC,而使用峰值信噪比(PSNR)测量的图像质量却没有显着降低)。与将MSE阈值方案用作块活动分类器相比,k-d树用于图像分割的影响进一步显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号