...
首页> 外文期刊>Astronomy and astrophysics >The L1157-B1 astrochemical laboratory: testing the origin of DCN
【24h】

The L1157-B1 astrochemical laboratory: testing the origin of DCN

机译:L1157-B1地球化学实验室:测试DCN的来源

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. L1157-B1 is the brightest shocked region of the large-scale molecular outflow. It is considered the prototype of the so-called chemically rich active outflows, being the perfect laboratory to study how shocks affect the molecular gas content. Specifically, several deuterated molecules have previously been detected with the IRAM 30?m telescope, most of them formed on grain mantles and then released into the gas phase due to the passage of the shock. Aims. We aim to observationally investigate the role of the different chemical processes at work that lead to formation of the DCN and compare it with HDCO, the two deuterated molecules imaged with an interferometer, and test the predictions of the chemical models for their formation. Methods. We performed high-angular-resolution observations toward L1157-B1 with the IRAM NOEMA interferometer of the DCN?(2–1) and H ~(13) CN?(2–1) lines to compute the deuterated fraction, D _(frac) (HCN), and compare it with previously reported D _(frac) of other molecular species. Results. We detected emission of DCN?(2–1) and H ~(13) CN?(2–1) arising from L1157-B1 shock. The deuterated fraction D _(frac) (HCN) is ~ 4 × 10~(-3) and given the associated uncertainties, we did not find significant variations across the bow-shock structure. Contrary to HDCO, whose emission delineates the region of impact between the fast jet and the ambient material, DCN is more widespread and not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN and H ~(13) CN match the spectral signature of the outflow cavity walls, suggesting that their emission results from shocked gas. The analysis of the time-dependent gas-grain chemical model UCL_CHEM coupled with a parametric C-type shock model shows that the observed deuterated fraction D _(frac) (HCN) is reached during the post-shock phase, when the gas is at T = 80 K, matching the dynamical timescale of the B1 shock, around ~ 1100 yr. Conclusions. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the widespread DCN emission, dominating especially in the head of the bow-shock, and sputtering from grain mantles toward the jet impact region, that can be efficient close to the brightest DCN clumps B1a.
机译:上下文。 L1157-B1是大规模分子流出物中最亮的震荡区域。它被认为是所谓化学丰富的主动流出的原型,是研究冲击如何影响分子气体含量的理想实验室。具体来说,先前已使用IRAM 30?m望远镜检测到了几个氘化分子,它们中的大多数形成在颗粒幔中,然后由于冲击的通过而释放到气相中。目的我们旨在观察性地研究导致DCN形成的不同化学过程的作用,并将其与HDCO(用干涉仪成像的两个氘化分子)进行比较,并测试其化学模型的预测。方法。我们使用DCN?(2-1)和H〜(13)CN?(2-1)线的IRAM NOEMA干涉仪对L1157-B1进行了高角度分辨率的观测,以计算氘化分数D _(frac )(HCN),并将其与先前报道的其他分子种类的D _(frac)进行比较。结果。我们检测到由于L1157-B1冲击而产生的DCN?(2-1)和H〜(13)CN?(2-1)的发射。氘代分数D _(frac)(HCN)为〜4×10〜(-3),并且鉴于相关的不确定性,我们没有发现整个弓形冲击结构存在显着变化。与HDCO的排放相反,HDCO的排放描绘了快速射流与周围材料之间的撞击区域,DCN更为广泛,并且不仅限于撞击区域。这与气相化学在弓形冲击头中的HCN氘化中起主要作用的想法是一致的,弓形冲击头中的HCO未被检测到,因为它是晶粒表面化学的产物。 DCN和H〜(13)CN的光谱与流出腔壁的光谱特征相符,表明它们的发射是由冲击气体引起的。对随时间变化的气粒化学模型UCL_CHEM和参数C型激波模型的分析表明,在激波后阶段,当气体处于一定温度时,达到了观测到的氘分数D _(frac)(HCN)。 T = 80 K,与B1冲击的动态时标匹配,约1100年。结论。我们的结果表明,L1157-B1中DCN的存在是一种气相化学反应的组合,该化学反应产生了广泛的DCN发射,尤其是在弓形冲击头中占主导地位,并且从晶粒幔向溅射冲击区溅射,靠近最明亮的DCN块B1a的效率很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号