首页> 外文期刊>IFAC PapersOnLine >Nested Plant/Controller Co-Design Using G-Optimal Design and Extremum Seeking: Theoretical Framework and Application to an Airborne Wind Energy System
【24h】

Nested Plant/Controller Co-Design Using G-Optimal Design and Extremum Seeking: Theoretical Framework and Application to an Airborne Wind Energy System

机译:使用G优化设计和极值寻求的嵌套工厂/控制器协同设计:理论框架及其在机载风能系统中的应用

获取原文
       

摘要

This paper presents a unique nested optimization framework for the co-design of a physical system (plant) and controller, which leverages optimal Design of Experiments (DoE) techniques for the plant optimization and extremum seeking for the control system optimization. At each iteration of the optimization, candidate plant parameters are generated by using G-optimal DoE. Unlike gradient-based approaches, the use of optimal DoE enables efficient global exploration of a plant design space that can contain multiple local optima. For each candidate plant design, the corresponding controller optimization is performed in real time, using extremum seeking. This enables the real-time adjustment of controller parameters during the course of simulations or experiments, thereby expediting the overall optimization process. The co-design process is carried out iteratively, where sub-optimal plant designs are rejected based on a response surface characterization and hypothesis testing. The co-design framework was validated in simulation for a Buoyant Airborne Turbine (BAT). Here, the optimized plant parameters were a reference area scale factor (scales the horizontal and vertical stabilizer areas uniformly) and center of mass location, whereas the optimized control parameter was the pitch angle setpoint. After four complete iterations, the flight performance index improved and the feasible plant design space (i.e., the locus of plant design parameters that could possibly be optimal, based on hypothesis testing) shrunk by 99%.
机译:本文为物理系统(工厂)和控制器的协同设计提供了一个独特的嵌套优化框架,该框架利用优化的实验设计(DoE)技术进行工厂优化和极值控制系统的优化。在优化的每次迭代中,使用G最佳DoE生成候选工厂参数。与基于梯度的方法不同,使用最佳DoE可以对包含多个局部最优值的工厂设计空间进行有效的全局探索。对于每个候选工厂设计,使用极值搜索实时执行相应的控制器优化。这样可以在仿真或实验过程中实时调整控制器参数,从而加快了整个优化过程。协同设计过程是迭代执行的,其中基于响应面特征和假设测试拒绝次优工厂设计。协同设计框架在浮力机载涡轮(BAT)的仿真中得到了验证。在这里,优化的工厂参数是参考区域比例因子(均匀地缩放水平和垂直稳定器区域)和质心位置,而优化的控制参数是俯仰角设定点。经过四次完整的迭代,飞行性能指数得到改善,可行的工厂设计空间(即基于假设检验可能最佳的工厂设计参数的轨迹)缩小了99%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号