首页> 外文期刊>Astronomy and astrophysics >Polarization measurement analysis - II. Best estimators of polarization fraction and angle
【24h】

Polarization measurement analysis - II. Best estimators of polarization fraction and angle

机译:偏振测量分析-II。极化率和角度的最佳估计

获取原文

摘要

With the forthcoming release of high precision polarization measurements, such as from the Planck satellite, it becomes critical to evaluate the performance of estimators for the polarization fraction and angle. These two physical quantities suffer from a well-known bias in the presence of measurement noise, as described in Part I of this series. In this paper, Part II of the series, we explore the extent to which various estimators may correct the bias. Traditional frequentist estimators of the polarization fraction are compared with two recent estimators: one inspired by a Bayesian analysis and a second following an asymptotic method. We investigate the sensitivity of these estimators to the asymmetry of the covariance matrix, which may vary over large datasets. We present for the first time a comparison among polarization angle estimators, and evaluate the statistical bias on the angle that appears when the covariance matrix exhibits effective ellipticity. We also address the question of the accuracy of the polarization fraction and angle uncertainty estimators. The methods linked to the credible intervals and to the variance estimates are tested against the robust confidence interval method. From this pool of polarization fraction and angle estimators, we build recipes adapted to different uses: the best estimators to build a mask, to compute large maps of the polarization fraction and angle, and to deal with low signal-to-noise data. More generally, we show that the traditional estimators suffer from discontinuous distributions at a low signal-to-noise ratio, while the asymptotic and Bayesian methods do not. Attention is given to the shape of the output distribution of the estimators, which is compared with a Gaussian distribution. In this regard, the new asymptotic method presents the best performance, while the Bayesian output distribution is shown to be strongly asymmetric with a sharp cut at a low signal-to-noise ratio. Finally, we present an optimization of the estimator derived from the Bayesian analysis using adapted priors.
机译:随着即将发布的高精度偏振测量结果(例如来自普朗克卫星的偏振测量结果),评估偏振分数和角度的估计器性能变得至关重要。如本系列第一部分所述,这两个物理量在存在测量噪声的情况下遭受众所周知的偏差。在本系列的第二部分中,我们探讨了各种估算器可以在多大程度上纠正偏差。将极化分数的传统常值估计器与两个最近的估计器进行比较:一个是贝叶斯分析启发的,另一个是采用渐近方法的估计。我们调查了这些估计量对协方差矩阵的不对称性的敏感性,该不对称性在大型数据集上可能有所不同。我们首次提出了极化角估计器之间的比较,并评估了当协方差矩阵表现出有效椭圆率时出现的角度的统计偏差。我们还解决了极化分数和角度不确定度估计器的准确性问题。链接到可信区间和方差估计的方法将针对鲁棒的置信区间方法进行测试。从这个极化率和角度估计器池中,我们构建了适合不同用途的配方:最佳估计器,用于构建掩模,计算极化率和角度的大图,并处理低信噪比数据。更一般地说,我们表明传统估计量在低信噪比下遭受不连续分布的影响,而渐近法和贝叶斯方法则没有。注意估计器的输出分布形状,将其与高斯分布进行比较。在这方面,新的渐近方法表现出最好的性能,而贝叶斯输出分布显示出强烈的非对称性,并且在低信噪比的情况下具有锐利的截断效果。最后,我们提出了使用经过调整的先验从贝叶斯分析得出的估计器的优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号