...
首页> 外文期刊>Applied and Environmental Microbiology >Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae
【24h】

Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae

机译:工程氧化还原辅因子的再生,以改善酿酒酵母的戊糖发酵。

获取原文

摘要

Pentose fermentation to ethanol with recombinant Saccharomyces cerevisiae is slow and has a low yield. A likely reason for this is that the catabolism of the pentoses d-xylose and l-arabinose through the corresponding fungal pathways creates an imbalance of redox cofactors. The process, although redox neutral, requires NADPH and NAD+, which have to be regenerated in separate processes. NADPH is normally generated through the oxidative part of the pentose phosphate pathway by the action of glucose-6-phosphate dehydrogenase (ZWF1). To facilitate NADPH regeneration, we expressed the recently discovered gene GDP1, which codes for a fungal NADP+-dependent d-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) (EC 1.2.1.13), in an S. cerevisiae strain with the d-xylose pathway. NADPH regeneration through an NADP-GAPDH is not linked to CO2 production. The resulting strain fermented d-xylose to ethanol with a higher rate and yield than the corresponding strain without GDP1; i.e., the levels of the unwanted side products xylitol and CO2 were lowered. The oxidative part of the pentose phosphate pathway is the main natural path for NADPH regeneration. However, use of this pathway causes wasteful CO2 production and creates a redox imbalance on the path of anaerobic pentose fermentation to ethanol because it does not regenerate NAD+. The deletion of the gene ZWF1 (which codes for glucose-6-phosphate dehydrogenase), in combination with overexpression of GDP1 further stimulated d-xylose fermentation with respect to rate and yield. Through genetic engineering of the redox reactions, the yeast strain was converted from a strain that produced mainly xylitol and CO2 from d-xylose to a strain that produced mainly ethanol under anaerobic conditions.
机译:用重组酿酒酵母将戊糖发酵为乙醇的过程​​很慢,且收率很低。其可能的原因是戊糖d-木糖和l-阿拉伯糖通过相应的真菌途径的分解代谢导致氧化还原辅因子的失衡。该过程尽管是氧化还原中性的,但仍需要NADPH和NAD + ,它们必须在单独的过程中重新生成。 NADPH通常是通过葡萄糖6-磷酸脱氢酶( ZWF1 )的作用通过戊糖磷酸途径的氧化部分生成的。为了促进NADPH的再生,我们表达了最近发现的基因 GDP1 ,该基因编码真菌依赖NADP + 的d-甘油醛-3-磷酸脱氢酶(NADP-GAPDH)( EC 1.2.1.13)中的 S。具有木糖途径的啤酒酵母菌株。通过NADP-GAPDH产生的NADPH再生与CO 2 的产生无关。所得到的菌株比不含 GDP1 的相应菌株以更高的速率和产率将d-木糖发酵为乙醇。即降低了有害副产物木糖醇和CO 2 的含量。戊糖磷酸途径的氧化部分是NADPH再生的主要自然途径。但是,使用该途径会导致浪费的CO 2 产生,并在厌氧戊糖发酵为乙醇的过程​​中造成氧化还原失衡,因为它不会再生NAD + 。删除 ZWF1 基因(编码葡萄糖6-磷酸脱氢酶),再加上 GDP1 的过表达,进一步促进了d-木糖发酵的速率和产量。通过氧化还原反应的基因工程,将酵母菌株从主要由木糖醇产生木糖醇和CO 2 的菌株转化为在厌氧条件下主要产生乙醇的菌株。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号