首页> 外文会议>Microbial engineering >COMBINED ENGINEERING OF DISACCHARIDE TRANSPORT AND PHOSPHOROLYSIS FOR ENHANCED ATP YIELD FROM SUCROSE FERMENTATION IN SACCHAROMYCES CEREVISIAE
【24h】

COMBINED ENGINEERING OF DISACCHARIDE TRANSPORT AND PHOSPHOROLYSIS FOR ENHANCED ATP YIELD FROM SUCROSE FERMENTATION IN SACCHAROMYCES CEREVISIAE

机译:糖酵母糖发酵中糖转运与磷酸结合的联合工程。

获取原文
获取原文并翻译 | 示例

摘要

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase) (Figure 1). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02 h~(-1) (LmSPase) and 0.06 ± 0.01 h~(-1) (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01 h~(-1) and 0.08 ± 0.00 h~(-1), respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUFI increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.
机译:厌氧工业发酵过程不需要曝气和强烈混合,因此节省的成本对化学药品和燃料的生产是有益的。然而,发酵途径的自由能保守常常不足以产生和输出所需化合物和/或细胞生长和维持。为了在酿酒酵母发酵工业上相关的二糖蔗糖过程中增加自由能的守恒,我们首先用间肠十二指肠球菌中的蔗糖磷酸化酶(LmSPase)代替了天然酵母α-葡萄糖苷酶(图1)。随后,我们用菜豆(PvSUF1)的假定蔗糖促进剂代替了原生质子偶联的蔗糖摄取系统。所得菌株在蔗糖上厌氧生长,以0.09±0.02 h〜(-1)(LmSPase)和0.06±0.01 h〜(-1)(PvSUF1,LmSPase)的特定生长速率生长。编码磷酸葡萄糖突变酶的酵母PGM2基因的过表达使这些菌株的蔗糖厌氧生长速率分别增加至0.23±0.01 h〜(-1)和0.08±0.00 h〜(-1)。测定厌氧蔗糖有限的恒化器培养物中的生物量产量,以评估工程菌株的自由能保守性。用磷酸化酶代替细胞内水解酶可使蔗糖上的生物质产率提高31%。用PvSUFI替代天然质子偶联的蔗糖摄取系统后,厌氧生物质产量进一步提高了8%,总体提高了41%。通过实验证明双糖摄取和裂解相结合的工程技术在能量方面的优势,这项研究代表了厌氧生产化合物的第一步,该化合物的代谢途径目前无法保存足够的自由能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号