...
首页> 外文期刊>Journal of Biomechanical Science and Engineering >Cavitation Bubbles Mediated Molecular Delivery During Sonoporation
【24h】

Cavitation Bubbles Mediated Molecular Delivery During Sonoporation

机译:空化气泡介导的声发射过程中的分子传递。

获取原文
           

摘要

References(57) Cited-By(11) Molecular delivery using ultrasound (US) and nano/microbubbles (NBs), i.e., sonoporation, has applications in gene therapy and anticancer drug delivery. When NBs are destructed by ultrasound, the surrounding cells are exposed to mechanical impulsive forces generated by collapse of either the NBs or the cavitation bubbles created by the collapse of NBs. In the present study, experimental, theoretical and numerical analyses were performed to investigate cavitation bubbles mediated molecular delivery during sonoporation. Experimental observation using lipid NBs indicated that increasing US pressure increased uptake of fluorescent molecules, calcein (molecular weight: 622), into 293T human, and decreased survival fraction. Confocal microscopy revealed that calcein molecules were uniformly distributed throughout the some treated cells. Next, the cavitation bubble behavior was analyzed theoretically based on a spherical gas bubble dynamics. The impulse of the shock wave (i.e., the pressure integrated over time) generated by the collapse of a cavitation bubble was a dominant factor for exogenous molecules to enter into the cell membrane rather than bubble expansion. Molecular dynamics simulation revealed that the number of exogenous molecules delivered into the cell membrane increased with increasing the shock wave impulse. We concluded that the impulse of the shock wave generated by cavitation bubbles was one of important parameters for causing exogenous molecular uptake into living cells during sonoporation.
机译:参考文献(57)被引用人(11)使用超声(US)和纳米/微泡(NBs)进行分子递送,即声穿孔,已在基因治疗和抗癌药物递送中得到应用。当NB被超声波破坏时,周围的细胞会受到NB塌陷或NB塌陷产生的空化气泡产生的机械脉冲力的作用。在本研究中,进行了实验,理论和数值分析,以研究空泡在声波穿孔过程中介导的分子传递。使用脂质NB进行的实验观察表明,增加的US压力可增加293T人类对荧光分子钙黄绿素(分子量:622)的吸收,并降低存活率。共聚焦显微镜显示钙黄绿素分子均匀分布在一些处理过的细胞中。接下来,基于球形气泡动力学从理论上分析了空化气泡的行为。空化气泡破裂产生的冲击波脉冲(即随时间积分的压力)是外源分子进入细胞膜而不是气泡膨胀的主要因素。分子动力学模拟显示,随着冲击波脉冲的增加,进入细胞膜的外源分子数量增加。我们得出的结论是,空化气泡产生的冲击波的冲动是在声波穿孔过程中引起外源分子摄取进入活细胞的重要参数之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号