首页> 外文期刊>Journal of Automation, Mobile Robotics & Intelligent Systems >M-DPOP: Faithful Distributed Implementation of Efficient Social Choice Problems
【24h】

M-DPOP: Faithful Distributed Implementation of Efficient Social Choice Problems

机译:M-DPOP:有效的社会选择问题的忠实分布式实施

获取原文

摘要

In the efficient social choice problem, the goal is to assign values, subject to side constraints, to a set of variables to maximize the total utility across a population of agents, where each agent has private information about its utility function. In this paper we model the social choice problem as a distributed constraint optimization problem (DCOP), in which each agent can communicate with other agents that share an interest in one or more variables. Whereas existing DCOP algorithms can be easily manipulated by an agent, either by misreporting private information or deviating from the algorithm, we introduce M-DPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient social choice. This provides a concrete example of how the methods of mechanism design can be unified with those of distributed optimization. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect of the protocol, neither information-revelation, computation, nor communication, and whatever the private information of other agents. We allow for payments by agents to a central bank, which is the only central authoritythat we require. To achieve faithfulness, we carefully integrate the Vickrey-Clarke-Groves (VCG) mechanism with the DPOP algorithm, such that each agent is only asked to perform computation, report information, and send messages that is in its own best interest. Determining agent i's payment requires solving the social choice problem without agent i. Here, we present a method to reuse computation performed in solving the main problem in a way that is robust against manipulation by the excluded agent. Experimental results on structured problems show that as much as 87% of the computation required for solving the marginal problems can be avoided by re-use, providing very good scalability in the number of agents.On unstructured problems, we observe a sensitivity of M-DPOP to the density of the problem, and we show that reusability decreases from almost 100% for very sparse problems to around 20% for highly connected problems. We close with a discussion of the features of DCOP that enable faithful implementations in this problem, the challenge of reusing computation from the main problem to marginal problems in other algorithms such as ADOPT and OptAPO, and the prospect of methods to avoid the welfare loss that can occur because of the transfer of payments to the bank.
机译:在有效的社会选择问题中,目标是在受附带约束的情况下,将值分配给一组变量,以使整个代理群体的总效用最大化,其中每个代理都有关于其效用函数的私人信息。在本文中,我们将社会选择问题建模为分布式约束优化问题(DCOP),其中每个代理可以与对一个或多个变量有兴趣的其他代理进行通信。现有的DCOP算法很容易被代理人操纵,无论是误报私人信息还是偏离该算法,我们都会引入M-DPOP,这是第一种DCOP算法,为有效的社会选择提供了可靠的分布式实现。这提供了如何将机制设计方法与分布式优化方法统一的具体示例。诚信确保任何代理都不会单方面背离协议的任何方面,信息泄露,计算或通信以及其他代理的私人信息,而不会从中受益。我们允许代理商向中央银行付款,这是我们唯一需要的中央机构。为了实现忠实,我们将Vickrey-Clarke-Groves(VCG)机制与DPOP算法进行了仔细集成,以便仅要求每个代理执行计算,报告信息并发送符合其自身最大利益的消息。确定代理商i的付款需要解决没有代理商i的社会选择问题。在这里,我们提出了一种方法,该方法可以重用在解决主要问题中执行的计算,该方法可以抵抗被排除代理的操纵。对结构化问题的实验结果表明,重用可以避免解决边际问题所需的多达87%的计算,从而为代理数量提供了很好的可伸缩性。对于非结构化问题,我们观察到M- DPOP到问题的密度,我们表明可重用性从非常稀疏的问题的几乎100%降低到高度连接的问题的大约20%。最后,我们讨论DCOP的功能,该功能可以在该问题上实现忠实的实现,在诸如ADOPT和OptAPO之类的其他算法中将计算从主要问题重用到边际问题的挑战,以及避免产生福利损失的方法的前景可能是由于付款转帐到银行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号