首页> 外文期刊>Journal of advanced transportation >Vehicle Relocation Triggering Thresholds Determination in Electric Carsharing System under Stochastic Demand
【24h】

Vehicle Relocation Triggering Thresholds Determination in Electric Carsharing System under Stochastic Demand

机译:随机需求下电动汽车共享系统中车辆重定位触发阈值的确定

获取原文

摘要

Vehicle unbalance usually occurs in multistation electric carsharing systems. Threshold triggering method is one of the most practicable approaches for vehicle relocation, while determination of thresholds has not been sufficiently studied particularly for electric carsharing system. This paper presents an approach on determining the thresholds considering the stochastic demands and system states. Firstly, we establish a state transition model involving the stochastic variables to capture the dynamics of the number and battery status of vehicles as well as the traffic demands. Consequently, a dual-objective optimization model was developed to determine the proper values of thresholds. The solution algorithm employed the min–max robust optimization to tackle the uncertainty and the Pareto optimum to decide the solution under dual objectives. To test the distribution stochastic variables, we involve the orders data and the supplementary user survey. Comparison is conducted among three methods the empirical rules, the deterministic method, and the stochastic method, where the results suggest that the stochastic method achieves better solutions on the dual objectives under stochastic demands.
机译:车辆不平衡通常发生在多站电动汽车共享系统中。阈值触发方法是用于车辆重定位的最实用方法之一,而阈值的确定还没有得到足够的研究,特别是对于电动汽车共享系统。本文提出了一种在考虑随机需求和系统状态的情况下确定阈值的方法。首先,我们建立了一个包含随机变量的状态转移模型,以捕获车辆数量和电池状态以及交通需求的动态变化。因此,开发了双目标优化模型来确定阈值的正确值。解决方案算法使用最小-最大鲁棒优化来解决不确定性,并使用帕累托最优来确定双重目标下的解决方案。为了测试分布随机变量,我们涉及订单数据和补充用户调查。在经验法则,确定性方法和随机方法这三种方法之间进行了比较,结果表明,随机方法在随机需求下可以更好地解决双重目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号