首页> 外文期刊>The Internet Journal of Microbiology >Development of Bioprocess for Improved Production of Alkaline Protease by Mutant Strain of Aspergilllus flavus in Solid State Fermentation using Agricultural Wastes
【24h】

Development of Bioprocess for Improved Production of Alkaline Protease by Mutant Strain of Aspergilllus flavus in Solid State Fermentation using Agricultural Wastes

机译:利用农业废料固态发酵黄曲霉突变菌株改进碱性蛋白酶生产生物工艺的研究

获取原文
           

摘要

A mutant of Aspergillus flavus MTCC 9952, developed by chemical mutagenesis, produced 37% higher alkaline protease over wild type after optimization of fermentation conditions. The agro-industrial wastes wheat bran and corn cob in the ratio of 1:1 with initial moisture content of 50% were found to be most suitable substrates for protease production under solid state fermentation. Maximum alkaline protease was produced when culture was incubated at 37°C with initial medium pH 9.0 in 48 h with inoculum size of 1x108 spores/gram IDS. Supplementation of fructose (200 mg/g IDS) as carbon and malt extract (100 mg/g IDS) as nitrogen source with other ingredients like di-ammonium hydrogen phosphate (20 g/g IDS) and CuSO4 (0.5 mg/g IDS) considerably increased the protease production. An inexpensive and readily available agro by-product can be used for production of industrially important enzymes. Introduction Proteases are important group of enzymes from an industrial perspective and cater for the requirement of nearly 60% of the world enzyme market (Kalisz, 1998). Alkaline proteases execute a large variety of complex physiological, metabolic and regulatory functions which is evident from its occurrence in all forms of living organisms (Wandersman, 1989). Furthermore, these enzymes are of great interest from a biotechnological angle and are being investigated not only in scientific areas like protein chemistry and protein engineering, but also find application in detergent, food, pharmaceutical and tannery industries (Kumar and Takagi, 1999). In the last few decades, the exponential increase in the application of proteases in various fields instigated the research in both qualitative improvement and quantitative enhancement of proteases. To achieve commercially viable production levels, it requires strain-improvement programs as the production level of the enzymes in naturally occurring strains is, in most cases, too low for commercial exploitation (Verdoes et al., 1995). In recent years the genetic engineering and targeted mutagenesis have been emerged as attractive tool for strain improvement, though the classical mutagenesis methods (physical and chemical) in combination with mutant selection and medium optimization forms a prevailing strategy to obtain overproduction of the enzyme. On an industrial scale, extracellular alkaline proteases are produced using complex media containing cost effective substrates responsible for 30 to 40% of the production costs (Kumar and Parrack, 2003). For potential industrial applications, organisms growing on economical substrates are requisite (Shikha et al., 2007). To this end, solid state (substrate) fermentation (SSF) offers utmost possibilities wherein agro-industrial wastes (wheat bran, rice bran, mustard oil cake, coconut oil cake etc.) are used for the production of value added products by using microorganisms. In addition, SSF poses several economic and engineering advantages over submerged fermentation (SmF) such as (a) low moisture content, preventing bacterial contamination, (b) simplicity of equipment (Hesseltine, 1987), (c) amenability to use upto 20-30% substrate, in contrast to the maximum of 5% in SmF process (Pamment et al., 1978) (d) high volumetric productivity (e) lower downstream processing charges (Pandey et al., 2000). Keeping in view the incessant escalating demand of alkaline protease, the present study has been focused on the development of a potential mutant strain and optimization of fermentation parameters in SSF to obtain elevated level of protease production. ?Experimental: Materials and Methods Microorganism and culture conditions A protease producing fungal strain was isolated in our laboratory from the soil sample of dairy industry and identified as Aspergillus flavus MTCC 9952 at Institute of Microbial Technology, Chandigarh, India. The culture was routinely maintained on malt extract-glucose-agar slants (containing g/L: malt extract, 20; glucose, 20; KCl, 0.5; MgS
机译:优化发酵条件后,通过化学诱变开发的黄曲霉MTCC 9952突变体比野生型高出37%的碱性蛋白酶。发现农业工业废料的麦麸和玉米芯的比例为1:1,初始水分含量为50%,是固态发酵生产蛋白酶最合适的底物。当将培养物在37°C,初始培养基pH 9.0孵育48小时,接种物大小为1x108孢子/克IDS时产生最大碱性蛋白酶。补充果糖(200 mg / g IDS)作为碳源和麦芽提取物(100 mg / g IDS)作为氮源,并添加其他成分,例如磷酸氢二铵(20 g / g IDS)和CuSO4(0.5 mg / g IDS)大大增加了蛋白酶的产量。廉价且容易获得的农业副产物可用于生产工业上重要的酶。简介从工业角度看,蛋白酶是重要的酶类,可满足世界近60%的酶市场需求(Kalisz,1998)。碱性蛋白酶执行多种复杂的生理,代谢和调节功能,这在所有形式的活生物体中均可见(Wandersman,1989)。此外,从生物技术的角度来看,这些酶引起了极大的兴趣,不仅在蛋白质化学和蛋白质工程等科学领域受到研究,而且在洗涤剂,食品,制药和制革工业中也得到应用(Kumar和Takagi,1999)。在过去的几十年中,蛋白酶在各个领域中的应用呈指数增长,这促进了对蛋白酶的定性改进和定量增强的研究。为了达到商业上可行的生产水平,它需要菌株改良计划,因为在大多数情况下,天然菌株中酶的生产水平对于商业开发来说太低了(Verdoes et al。,1995)。近年来,尽管经典的诱变方法(物理和化学方法)与突变体选择和培养基优化相结合形成了一种获得酶过量生产的流行策略,但遗传工程和靶向诱变已成为改善菌株的诱人工具。在工业规模上,细胞外碱性蛋白酶是使用复杂的培养基生产的,该培养基包含具有成本效益的底物,占生产成本的30%至40%(Kumar和Parrack,2003年)。对于潜在的工业应用,必须在经济的基质上生长生物(Shikha等,2007)。为此,固态(底物)发酵(SSF)提供了最大的可能性,其中农业工业废物(麦麸,米糠,芥末油饼,椰子油饼等)用于通过利用微生物生产增值产品。此外,SSF与深层发酵(SmF)相比,具有许多经济和工程优势,例如(a)水分含量低,可防止细菌污染,(b)设备简单(Hesseltine,1987),(c)最多可使用20- 30%的底物,而SmF过程中的最大含量为5%(Pamment等,1978)(d)高容积生产率(e)下游加工费用较低(Pandey等,2000)。考虑到对碱性蛋白酶的不断升级的需求,本研究集中在潜在的突变菌株的开发和SSF中发酵参数的优化上,以提高蛋白酶的生产水平。实验:材料和方法微生物和培养条件在我们的实验室中,从牛奶工业的土壤样品中分离出一种产生蛋白酶的真菌菌株,并在印度昌迪加尔的微生物技术研究所鉴定为黄曲霉MTCC 9952。常规将培养物维持在麦芽提取物-葡萄糖-琼脂斜面上(含g / L:麦芽提取物20;葡萄糖20; KCl 0.5); MgS

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号