首页> 外文期刊>Pramana >On the analytical solution of Fornberga€“Whitham equation with the new fractional derivative
【24h】

On the analytical solution of Fornberga€“Whitham equation with the new fractional derivative

机译:关于分数阶导数的Fornberga“ Whitham方程”的解析解

获取原文

摘要

Motivated by the simplicity, natural and efficient nature of the new fractional derivative introduced by R Khalil et al in J. Comput. Appl. Math. 264, 65 (2014), analytical solution of space-time fractional Fornberga€“Whitham equation is obtained in series form using the relatively new method called q-homotopy analysis method (q-HAM). The new fractional derivative makes it possible to introduce fractional order in space to the Fornberga€“Whitham equation and be able to obtain its solution. This work displays the elegant nature of the application of q-HAM to solve strongly nonlinear fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for nonlinear differential equations. Comparisons are made on the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.
机译:受到R Khalil等人在J. Comput。Chem。1989中引入的新分数衍生物的简单,自然和有效性质的激励。应用数学。 264,65(2014),时空分数Fornberga-Whitham方程的解析解,是使用称为q-同伦分析法(q-HAM)的相对较新的方法以级数形式获得的。新的分数导数使得可以将空间的分数阶引入Fornberga?Whitham方程,并能够获得其解。这项工作展示了q-HAM应用于解决强非线性分数阶微分方程的优雅性质。辅助参数h的存在以有效的方式有助于获得与精确解相比可比的更好的近似值。这种方法的分数因子使其比其他现有的非线性微分方程分析方法更具优势。比较了这些模型的精确解是否存在。分析表明,我们的分析解决方案非常迅速地收敛到精确的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号