...
首页> 外文期刊>PLoS Genetics >Histone H3K56 Acetylation, CAF1, and Rtt106 Coordinate Nucleosome Assembly and Stability of Advancing Replication Forks
【24h】

Histone H3K56 Acetylation, CAF1, and Rtt106 Coordinate Nucleosome Assembly and Stability of Advancing Replication Forks

机译:组蛋白H3K56乙酰化,CAF1和Rtt106协调核小体组装和前进复制叉的稳定性。

获取原文
           

摘要

Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage. Author Summary Loss of replication fork integrity is a primary source of genetic instability. In eukaryotes DNA synthesis is rapidly followed by its assembly into chromatin, and these two processes are tightly connected. Defective chromatin assembly mutants accumulate DNA damage and are sensitive to genotoxic agents, even though the mechanisms responsible for this genetic instability remain unclear because chromatin assembly also plays essential roles in transcription, silencing, DNA repair, and checkpoint signaling. A good example is the acetylation of histone H3 at lysine 56, which promotes histone deposition by the chromatin assembly factors CAF1 and Rtt106. In this case, the absence of this modification also causes a loss of structural and/or coding information at chromatin. Here we show that defective replication-coupled chromatin assembly leads to an accumulation of recombinogenic DNA damage by affecting the integrity of advancing, but not stalled, replication forks. Therefore, we propose that H3K56ac/CAF1/Rtt106-dependent chromatin assembly provides a mechanism for the stabilization of replication forks. Besides, H3K56 acetylation promotes replicative DNA damage repair/tolerance through a function that is independent of CAF1/Rtt106 and likely subsequent to its deposition at chromatin, revealing this modification as a key regulator of genome integrity.
机译:染色质组装突变体会积累重组DNA损伤,并对遗传毒性剂敏感。在这里,我们分析了为什么H3K56乙酰化依赖的CAF1和Rtt106染色质组装途径的损伤,在DNA复制期间在H3 / H4沉积中具有多余的作用,会导致遗传不稳定。我们显示,H3K56乙酰化的缺乏或CAF1和Rtt106的同时敲除会通过影响前进的复制叉的完整性而增加同源重组,而它们对停滞的复制叉稳定性有较小的影响,以响应复制抑制剂羟基脲。复制fork完整性中的此缺陷不是由于检查点缺陷而引起的。相反,H3K56乙酰化通过不需要CAF1 / Rtt106且可能在复制偶联核小体沉积过程之后的DNA修复/耐受机制保护免受复制性DNA破坏剂的侵害。我们认为,H3K56ac / CAF1 / Rtt106介导的DNA复制过程中DNA合成与组蛋白沉积之间的紧密联系提供了一种机制,可以稳定前进的复制叉并维持基因组完整性,而H3K56乙酰化则具有另外的CAF1 / Rtt106-在对复制性DNA损伤的应答中具有独立的功能。作者摘要复制叉完整性的丧失是遗传不稳定的主要来源。在真核生物中,DNA合成很快被组装成染色质,这两个过程紧密相连。有缺陷的染色质组装突变体会积累DNA损伤,并对遗传毒性剂敏感,尽管导致这种遗传不稳定的机制仍不清楚,因为染色质组装在转录,沉默,DNA修复和检查点信号传导中也起着至关重要的作用。一个很好的例子是赖氨酸56处组蛋白H3的乙酰化,它通过染色质装配因子CAF1和Rtt106促进组蛋白沉积。在这种情况下,不进行这种修饰也会导致染色质上结构和/或编码信息的丢失。在这里,我们显示缺陷复制耦合的染色质组装通过影响前进但没有停滞的复制叉的完整性而导致重组DNA损伤的积累。因此,我们建议依赖H3K56ac / CAF1 / Rtt106的染色质组装提供稳定复制叉的机制。此外,H3K56乙酰化通过一种独立于CAF1 / Rtt106的功能促进了复制性DNA损伤的修复/耐受,并且很可能随后在染色质上沉积,揭示了这种修饰是基因组完整性的关键调节因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号