...
首页> 外文期刊>PLoS Computational Biology >The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during Predation
【24h】

The Mechanistic Basis of Myxococcus xanthus Rippling Behavior and Its Physiological Role during Predation

机译:粘球菌波纹行为的机理基础及其在捕食过程中的生理作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Myxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals. The ABM has demonstrated that three ingredients are sufficient to generate rippling behavior: (i) side-to-side signaling between two cells that causes one of the cells to reverse, (ii) a minimal refractory time period after each reversal during which cells cannot reverse again, and (iii) physical interactions that cause the cells to locally align. To explain why rippling behavior appears as a consequence of the presence of prey, we postulate that prey-associated macromolecules indirectly induce ripples by stimulating side-to-side contact-mediated signaling. In parallel to the simulations, M. xanthus predatory rippling behavior was experimentally observed and analyzed using time-lapse microscopy. A formalized relationship between the wavelength, reversal time, and cell velocity has been predicted by the simulations and confirmed by the experimental data. Furthermore, the results suggest that the physiological role of rippling behavior during M. xanthus predation is to increase the rate of spreading over prey cells due to increased side-to-side contact-mediated signaling and to allow predatory cells to remain on the prey longer as a result of more periodic cell motility.
机译:在多细胞子实体发育和捕食其他细菌的过程中,黄色葡萄球菌细胞自组织成行波的周期性带,称为波纹。为了研究这种革兰氏阴性土壤细菌在捕食过程中起波纹行为的机理基础及其在生理上的作用,我们采用了一种将数学建模与实验观察相结合的方法。具体来说,我们开发了一种基于代理的模型(ABM)以模拟波纹行为,该行为采用了新的信号机制来触发细胞逆转。 ABM已证明三种成分足以产生涟漪行为:(i)两个细胞之间的左右信号传递,使其中一个细胞发生逆转;(ii)每次逆转后的最短不应期,在此期间细胞无法再次逆转,以及(iii)导致细胞局部排列的物理相互作用。为了解释为什么由于存在猎物而出现涟漪行为,我们推测与猎物相关的大分子通过刺激侧面接触介导的信号传导间接诱导涟漪。在模拟的同时,还通过实验观察和分析了沙棘衣原体的掠夺性波纹行为。通过仿真预测了波长,反转时间和细胞速度之间的形式关系,并通过实验数据证实了这种关系。此外,该结果表明,在黄褐线虫捕食期间波纹行为的生理学作用是由于侧向接触接触介导的信号传导增加而增加了在猎物细胞上的扩散速度,并使捕食性细胞在猎物上的停留时间更长。由于更周期性的细胞运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号