首页> 外文期刊>PLoS Computational Biology >Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks
【24h】

Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks

机译:酵母细胞周期转录网络中的连接性:来自神经网络的推论

获取原文
       

摘要

A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN) models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array) with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico “mutation” to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that “network-local discrimination” occurs when regulatory connections (here between MBF and target genes) are explicitly disfavored in one network module (G2), relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of MBF sites in G1 class genes.
机译:当前的挑战是开发基于多种类型的大规模功能基因组数据来推断基因网络调控关系的计算方法。我们发现单层前馈人工神经网络(ANN)模型可以通过整合全球体内蛋白质:DNA相互作用数据(ChIP / Array)与全基因组微阵列RNA数据来有效地发现基因网络结构。我们在酵母细胞周期转录网络上对此进行了测试,该网络由数百个具有阶段特异性RNA输出的基因组成。这些人工神经网络对数据中的噪声和各种扰动具有鲁棒性。他们基于平方和权重度量标准,可靠地确定了204个集合中12个已知的主要细胞周期因子中的10个,并对其进行了排名。多个酵母物种之间的基序发生的比较分析独立地证实了从ANN权重分析推断的关系。人工神经网络模型可以利用其他模型无法利用的生物基因网络的特性。人工神经网络自然会利用与特定表达输出相关的因子结合的缺失和存在模式。它们很容易受到计算机“突变”的影响,从而发现生物学上的冗余。他们可以使用所有范围的因子结合值。细胞周期人工神经网络的一个突出特征表明,生物网络中可能存在类似的特性。假设当一个网络模块(G2)中的调控连接(此处是MBF和靶基因之间)相对于其他模块和有丝分裂网络以外的基因类别明显受到不利影响时,就会发生“网络局部歧视”。如果正确的话,这预示着MBF基序将从被区分的阶级中大量消失,并且这种区分将通过进化而持续。对远缘相关裂殖酵母的分析证实了这一点,这表明网络局部歧视是真实的,并补充了G1类基因中MBF位点的众所周知的富集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号