首页> 外文期刊>Systematic Reviews >Sample size and power considerations in network meta-analysis
【24h】

Sample size and power considerations in network meta-analysis

机译:网络元分析中的样本量和功耗注意事项

获取原文

摘要

Background Network meta-analysis is becoming increasingly popular for establishing comparative effectiveness among multiple interventions for the same disease. Network meta-analysis inherits all methodological challenges of standard pairwise meta-analysis, but with increased complexity due to the multitude of intervention comparisons. One issue that is now widely recognized in pairwise meta-analysis is the issue of sample size and statistical power. This issue, however, has so far only received little attention in network meta-analysis. To date, no approaches have been proposed for evaluating the adequacy of the sample size, and thus power, in a treatment network. Findings In this article, we develop easy-to-use flexible methods for estimating the ‘effective sample size’ in indirect comparison meta-analysis and network meta-analysis. The effective sample size for a particular treatment comparison can be interpreted as the number of patients in a pairwise meta-analysis that would provide the same degree and strength of evidence as that which is provided in the indirect comparison or network meta-analysis. We further develop methods for retrospectively estimating the statistical power for each comparison in a network meta-analysis. We illustrate the performance of the proposed methods for estimating effective sample size and statistical power using data from a network meta-analysis on interventions for smoking cessation including over 100 trials. Conclusion The proposed methods are easy to use and will be of high value to regulatory agencies and decision makers who must assess the strength of the evidence supporting comparative effectiveness estimates.
机译:背景技术网络荟萃分析在确定同一疾病的多种干预措施之间的相对有效性方面正变得越来越流行。网络荟萃分析继承了标准成对荟萃分析的所有方法挑战,但由于干预比较多,因此复杂性增加。在成对的荟萃分析中现在被广泛认可的一个问题是样本数量和统计能力的问题。但是,到目前为止,该问题在网络元分析中只受到很少的关注。迄今为止,还没有提出用于评估治疗网络中样本量以及功率的适当性的方法。结果在本文中,我们开发了易于使用的灵活方法,用于在间接比较荟萃分析和网络荟萃分析中估算“有效样本量”。特定治疗比较的有效样本量可以解释为成对荟萃分析中的患者数量,该荟萃分析将提供与间接对比或网络荟萃分析相同程度和强度的证据。我们进一步开发了用于回顾性估计网络元分析中每个比较的统计功效的方法。我们通过对包括100项试验在内的戒烟干预措施进行网络荟萃分析得出的数据,说明了所提出方法的有效样本量和统计功效的估计效果。结论所提出的方法易于使用,对于必须评估支持比较有效性估计的证据强度的监管机构和决策者具有很高的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号