首页> 外文期刊>Symmetry >A Bidirectional Searching Strategy to Improve Data Quality Based on K-Nearest Neighbor Approach
【24h】

A Bidirectional Searching Strategy to Improve Data Quality Based on K-Nearest Neighbor Approach

机译:基于最近邻法的提高数据质量的双向搜索策略

获取原文

摘要

Traffic data are the basis of traffic control, planning, management, and other implementations. Incomplete traffic data that are not conducive to all aspects of transport research and related activities can have adverse effects such as traffic status identification error and poor control performance. For intelligent transportation systems, the data recovery strategy has become increasingly important since the application of the traffic system relies on the traffic data quality. In this study, a bidirectional k-nearest neighbor searching strategy was constructed for effectively detecting and recovering abnormal data considering the symmetric time network and the correlation of the traffic data in time dimension. Moreover, the state vector of the proposed bidirectional searching strategy was designed based the bidirectional retrieval for enhancing the accuracy. In addition, the proposed bidirectional searching strategy shows significantly more accuracy compared to those of the previous methods.
机译:交通数据是交通控制,规划,管理和其他实施的基础。不利于交通运输研究及相关活动各个方面的不完整交通数据会产生不利影响,例如交通状态识别错误和控制性能不佳。对于智能交通系统,由于交通系统的应用依赖于交通数据质量,因此数据恢复策略变得越来越重要。在这项研究中,考虑到对称时间网络和交通数据在时间维度上的相关性,构造了双向k最近邻搜索策略,以有效地检测和恢复异常数据。此外,基于双向检索设计了所提出的双向搜索策略的状态向量,以提高准确性。此外,与以前的方法相比,所提出的双向搜索策略显示出更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号