首页> 外文期刊>Stem cells translational medicine. >Role of Human‐Induced Pluripotent Stem Cell‐Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System
【24h】

Role of Human‐Induced Pluripotent Stem Cell‐Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System

机译:人类诱导的多能干细胞衍生的脊髓星形胶质细胞在多电极阵列系统中运动神经元功能成熟中的作用

获取原文
获取外文期刊封面目录资料

摘要

The ability to generate human‐induced pluripotent stem cell (hiPSC)‐derived neural cells displaying region‐specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC‐derived astrocytes (hiPSC‐A) are cultured with spinal cord hiPSC‐derived motor neurons (hiPSC‐MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC‐A enhance hiPSC‐MN electrophysiological maturation in a time‐dependent fashion. The sequence of plating, density, and age in which hiPSC‐A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC‐MN maturation. These findings are supported by immunocytochemistry and real‐time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC‐MN maturation in a time‐dependent and species‐specific manner and suggest a closer approximation of in vivo conditions.
机译:产生人类诱导的多能干细胞(hiPSC)的神经细胞并显示区域特异性表型的能力对于在体外建模中枢神经系统生物学特别感兴趣。我们描述了一种独特的方法,通过该方法在多电极阵列(MEA)系统中将脊髓hiPSC衍生的星形胶质细胞(hiPSC-A)与脊髓hiPSC衍生的运动神经元(hiPSC-MN)培养在一起,以记录随时间变化的电生理活动。我们显示,hiPSC-A以时间依赖的方式增强了hiPSC-MN的电生理成熟度。 hiPSC-A与MN共培养的电镀顺序,密度和年龄,而不是它们各自的hiPSC系起源,是影响神经元电生理的因素。当与小鼠原代脊髓星形胶质细胞共培养相比时,我们在完整的人类文化中观察到了更早更健壮的电生理成熟,表明人类起源与星形胶质细胞/运动神经元串扰的概括有关。最后,我们在MEA平台上测试药理化合物,并观察电生理活性的变化,这证实了hiPSC-MN的成熟。这些发现得到平行细胞培养中免疫细胞化学和实时PCR研究的支持,证明了人类星形胶质细胞介导的神经元结构成熟和蛋白质表达谱变化。有趣的是,这种关系是相互的,与神经元共培养也会影响星形胶质细胞的成熟。综上所述,这些数据表明,在人类体外脊髓培养系统中,星形胶质细胞以时间依赖性和物种特异性的方式支持hiPSC-MN的成熟,并暗示了体内条件的近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号