...
首页> 外文期刊>Stem cell research >Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration - ScienceDirect
【24h】

Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration - ScienceDirect

机译:在微重力中机械卸荷可减少间充质和造血干细胞介导的组织再生-ScienceDirect

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(??6.72), CSF2(??3.30), CD90(??3.33), PTPRC(??2.79), and GDF15(??2.45), but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow–blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.
机译:哺乳动物组织的机械负荷是组织生长和再生的有力推动者,而微重力下的负荷卸载可能导致组织再生减少,可能是通过对干细胞组织祖细胞的影响。为了测试机械卸载改变骨髓间充质和造血干细胞谱系分化的特定假设,我们研究了小鼠股骨近端骨髓如何在微重力下响应的细胞和分子方面。股骨头的小梁和皮质骨内膜骨表面在微重力下经历了明显的骨吸收,从而扩大了骨髓腔。从股骨头骨髓腔分离的细胞显示出早期间充质和造血分化的基因表达标记显着下调,包括FUT1(?6.72),CSF2(?3.30),CD90(?3.33),PTPRC(? 2.79)和GDF15(Δ2.45),但不包括干细胞标记,例如SOX2。在细胞水平上,原位组织学分析显示巨核细胞数量减少,而红细胞增加2.33倍。此外,红血球的岩藻糖基化水平升高,并与鼻窦相邻聚集,形成了骨髓-血液屏障,这可能为解释航天贫血提供了机械基础。微重力暴露后立即培养分离的骨髓细胞,增加了骨髓祖细胞间充质分化为体外矿化的骨结节以及造血细胞分化为破骨细胞的可能性,这表明未分化祖细胞在微重力作用下会积聚。这些结果支持这样的观点,即在微重力下机械卸载哺乳动物组织是组织生长和再生机制的强大抑制剂,作用于早期间充质和造血干细胞分化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号