首页> 外文期刊>Royal Society Open Science >Social signals and algorithmic trading of Bitcoin
【24h】

Social signals and algorithmic trading of Bitcoin

机译:比特币的社交信号和算法交易

获取原文

摘要

The availability of data on digital traces is growing to unprecedented sizes, but inferring actionable knowledge from large-scale data is far from being trivial. This is especially important for computational finance, where digital traces of human behaviour offer a great potential to drive trading strategies. We contribute to this by providing a consistent approach that integrates various datasources in the design of algorithmic traders. This allows us to derive insights into the principles behind the profitability of our trading strategies. We illustrate our approach through the analysis of Bitcoin, a cryptocurrency known for its large price fluctuations. In our analysis, we include economic signals of volume and price of exchange for USD, adoption of the Bitcoin technology and transaction volume of Bitcoin. We add social signals related to information search, word of mouth volume, emotional valence and opinion polarization as expressed in tweets related to Bitcoin for more than 3 years. Our analysis reveals that increases in opinion polarization and exchange volume precede rising Bitcoin prices, and that emotional valence precedes opinion polarization and rising exchange volumes. We apply these insights to design algorithmic trading strategies for Bitcoin, reaching very high profits in less than a year. We verify this high profitability with robust statistical methods that take into account risk and trading costs, confirming the long-standing hypothesis that trading-based social media sentiment has the potential to yield positive returns on investment.
机译:数字迹线上数据的可用性正在增长到空前的规模,但是从大规模数据中推断出可行的知识绝非易事。这对于计算金融尤为重要,因为在计算机金融中,人类行为的数字踪迹为驱动交易策略提供了巨大的潜力。我们通过提供一种在算法交易者的设计中集成各种数据源的一致方法来对此做出贡献。这使我们能够洞悉交易策略的获利能力背后的原理。我们通过对比特币的分析来说明我们的方法,比特币是一种价格波动很大的加密货币。在我们的分析中,我们考虑了美元交易量和价格,采用比特币技术和比特币交易量的经济信号。我们添加了3年以上与比特币相关的推文中表达的与信息搜索,口碑,情感价和观点两极化有关的社交信号。我们的分析表明,意见分歧和交换量增加先于比特币价格上涨,而情感价先于意见极化和交换量上涨。我们将这些见解用于设计比特币的算法交易策略,并在不到一年的时间内实现了很高的利润。我们通过考虑风险和交易成本的可靠统计方法验证了这种高盈利能力,证实了长期以来基于交易的社交媒体情绪有可能产生正投资回报的假说。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号