首页> 外文期刊>Remote Sensing >Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model
【24h】

Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model

机译:利用水云模型从合成Quad Pol SAR时间序列中提取玉米叶面积指数

获取原文

摘要

In order to monitor crop growth along the season with synthetic aperture radar (SAR) images, radiative transfer models were developed to retrieve key biophysical parameters, such as the Leaf Area Index (LAI). The semi-empirical water cloud model (WCM) can be used to estimate LAI values from SAR data and surface soil moisture information. Nevertheless, instability problems can occur during the model calibration, which subsequently reduce its transferability in both time and space. To avoid these ill-posed cases, three calibration methodologies are benchmarked in the present study. The accuracy of the retrieved LAI values for each methodology was analyzed, as well as the sensitivity of the signal to LAI for different soil moisture values. The sensitivity of the cross-polarization was highlighted especially for high LAI. The VV polarization was found sensitive for LAI values inferior to 2 m 2 /m 2 . Given the differential sensitivity of the C-band backscatter to maize canopies in each polarization, a Bayesian fusion of the LAI estimates in linear polarizations was developed. This fusion gives lower weights to estimates with a high uncertainty. This method systematically reduces the error and its associated variance. When considering all polarizations, the RMSE on LAI estimation decreased by 0.32 m 2 /m 2 , i.e., one fourth of the error value, as compared to the best estimation from a single polarization, and the associated uncertainty was reduced by a factor of two. Focusing on the two most sensitive polarizations to maize canopies (VV-HV), the error diminished by a third. This fusion framework shows thus a great potential to improve the accuracy and reliability of LAI retrieval of C-band quad-polarized data, as well as dual-polarized data, such as Sentinel-1.
机译:为了使用合成孔径雷达(SAR)图像监视整个季节的作物生长,开发了辐射转移模型来检索关键的生物物理参数,例如叶面积指数(LAI)。半经验水云模型(WCM)可用于根据SAR数据和地表土壤水分信息估算LAI值。然而,在模型校准期间可能会出现不稳定性问题,从而降低其在时间和空间上的可传递性。为了避免这些不适的情况,本研究对三种校准方法进行了基准测试。分析了每种方法检索到的LAI值的准确性,以及针对不同土壤湿度值的信号对LAI的敏感性。特别是对于高LAI,强调了交叉极化的灵敏度。发现VV极化对低于2 m 2 / m 2的LAI值敏感。考虑到C波段反向散射对每种偏振态对玉米冠层的敏感性不同,开发了线性偏振态下LAI估计值的贝叶斯融合。这种融合使较低的权重具有较高的不确定性。该方法系统地减少了误差及其相关的方差。当考虑所有极化时,与来自单个极化的最佳估计相比,LAI估计的RMSE降低了0.32 m 2 / m 2,即误差值的四分之一,并且相关的不确定性降低了两倍。着眼于玉米冠层的两个最敏感的极化(VV-HV),误差减少了三分之一。因此,这种融合框架显示出巨大的潜力,可提高C波段四极化数据以及双极化数据(例如Sentinel-1)的LAI检索的准确性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号