首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time Series Quad-Polarimetric SAR Images
【2h】

Estimating the Growing Stem Volume of the Planted Forest Using the General Linear Model and Time Series Quad-Polarimetric SAR Images

机译:使用一般线性模型和时间序列Quad-Polarimetric SAR图像估算种植森林的生长茎体积

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing the area of planted forests is rather important for compensation the loss of natural forests and slowing down the global warming. Forest growing stem volume (GSV) is a key indicator for monitoring and evaluating the quality of planted forest. To improve the accuracy of planted forest GSV located in south China, four L-band ALOS PALSAR-2 quad-polarimetric synthetic aperture radar (SAR) images were acquired from June to September with short intervals. Polarimetric characteristics (un-fused and fused) derived by the Yamaguchi decomposition from time series SAR images with different intervals were considered as independent variables for the GSV estimation. Then, the general linear model (GLM) obeyed the exponential distribution were proposed to retrieve the stand-level GSV in plantation. The results show that the un-fused power of double bounce scatters and four fused variables derived from single SAR image is highly sensitive to the GSV, and these polarimeric characteristics derived from the time series images more significantly contribute to improved estimation of GSV. Moreover, compared with the estimated GSV using the semi-exponential model, the employed GLM model with less limitations and simple algorithm has a higher saturation level (nearly to 300 m /ha) and higher sensitivity to high forest GSV values than the semi-exponential model. Furthermore, by reducing the external disturbance with the help of time average, the accuracy of estimated GSV is improved using fused polarimeric characteristics, and the estimation accuracy of forest GSV was improved as the images increase. Using the fused polarimetric characteristics (Dbl×Vol/Odd) and the GLM, the minimum RRMSE was reduced from 33.87% from single SAR image to 24.42% from the time series SAR images. It is implied that the GLM is more suitable for polarimetric characteristics derived from the time series SAR images and has more potential to improve the planted forest GSV.
机译:增加种植森林面积相当重要,对赔偿自然森林的丧失并减缓全球变暖。森林生长茎卷(GSV)是监测和评估种植森林质量的关键指标。为提高位于华南地区的种植森林GSV的准确性,从6月到9月的四个L频段Alos Palsar-2 Quad-Polarimetric合成孔径雷达(SAR)图像短暂间隔。由yamaguchi分解来自时间序列SAR图像的偏振特性(未融合和融合)被认为是GSV估计的独立变量。然后,提出了一般线性模型(GLM)遵循指数分布以检索种植园中的支架GSV。结果表明,从单个SAR图像衍生的双反射散射和四个融合变量的未熔化功率对GSV非常敏感,并且从时间序列图像导出的这些偏振特性更显着促进GSV估计。此外,与使用半指数模型的估计的GSV相比,具有较少限制和简单算法的所采用的GLM模型具有更高的饱和水平(近300米/公顷),比半指数高的高林GSV值更高的敏感性模型。此外,通过在时间平均的帮助下减少外部干扰,使用熔融偏振特性改善估计的GSV的精度,随着图像的增加,森林GSV的估计精度得到改善。使用熔融偏振特性(DBL×VOL / ODD)和GLM,最小RRMSE从单个SAR图像的33.87%降低到时间序列SAR图像的24.42%。暗示GLM更适合于源自时间序列SAR图像的偏振特性,并且具有改善种植的森林GSV的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号