首页> 外文期刊>Remote Sensing >Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST) Using an Ensemble Kalman Filter
【24h】

Data Assimilation of the High-Resolution Sea Surface Temperature Obtained from the Aqua-Terra Satellites (MODIS-SST) Using an Ensemble Kalman Filter

机译:使用集合卡尔曼滤波器从Aqua-Terra卫星(MODIS-SST)获得的高分辨率海表温度的数据同化

获取原文

摘要

We develop an assimilation method of high horizontal resolution sea surface temperature data, provided from the Moderate Resolution Imaging Spectroradiometer (MODIS-SST) sensors boarded on the Aqua and Terra satellites operated by National Aeronautics and Space Administration (NASA), focusing on the reproducibility of the Kuroshio front variations south of Japan in February 2010. Major concerns associated with the development are (1) negative temperature bias due to the cloud effects, and (2) the representation of error covariance for detection of highly variable phenomena. We treat them by utilizing an advanced data assimilation method allowing use of spatiotemporally varying error covariance: the Local Ensemble Transformation Kalman Filter (LETKF). It is found that the quality control, by comparing the model forecast variable with the MODIS-SST data, is useful to remove the negative temperature bias and results in the mean negative bias within −0.4 °C. The additional assimilation of MODIS-SST enhances spatial variability of analysis SST over 50 km to 25 km scales. The ensemble spread variance is effectively utilized for excluding the erroneous temperature data from the assimilation process.
机译:我们开发了一种高水平海平面温度数据的同化方法,该方法由搭载在美国国家航空航天局(NASA)运营的Aqua和Terra卫星上的中等分辨率成像光谱仪(MODIS-SST)传感器提供,着重于2010年2月,日本南部的黑潮锋变种。与开发相关的主要问题是(1)由于云效应造成的负温度偏差,以及(2)用于检测高变现象的误差协方差的表示。我们通过利用允许使用时空变化误差协方差的高级数据同化方法来处理它们:局部集合变换卡尔曼滤波器(LETKF)。通过将模型预测变量与MODIS-SST数据进行比较,发现质量控制对于消除负温度偏差并导致平均负偏差在-0.4°C之内非常有用。 MODIS-SST的额外同化增强了50 km至25 km范围内SST分析的空间变异性。集成扩展方差有效地用于从同化过程中排除错误的温度数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号