...
首页> 外文期刊>Remote Sensing >Impacts of Temporal-Spatial Variant Background Ionosphere on Repeat-Track GEO D-InSAR System
【24h】

Impacts of Temporal-Spatial Variant Background Ionosphere on Repeat-Track GEO D-InSAR System

机译:时空变化背景电离层对重复轨道GEO D-InSAR系统的影响

获取原文
           

摘要

An L band geosynchronous synthetic aperture radar (GEO SAR) differential interferometry system (D-InSAR) will be obviously impacted by the background ionosphere, which will give rise to relative image shifts and decorrelations of the SAR interferometry (InSAR) pair, and induce the interferometric phase screen errors in interferograms. However, the background ionosphere varies within the long integration time (hundreds to thousands of seconds) and the extensive imaging scene (1000 km levels) of GEO SAR. As a result, the conventional temporal-spatial invariant background ionosphere model (i.e., frozen model) used in Low Earth Orbit (LEO) SAR is no longer valid. To address the issue, we firstly construct a temporal-spatial background ionosphere variation model, and then theoretically analyze its impacts, including relative image shifts and the decorrelation of the GEO InSAR pair, and the interferometric phase screen errors, on the repeat-track GEO D-InSAR processing. The related impacts highly depend on the background ionosphere parameters (constant total electron content ( TEC ) component, and the temporal first-order and the temporal second-order derivatives of TEC with respect to the azimuth time), signal bandwidth, and integration time. Finally, the background ionosphere data at Isla Guadalupe Island (29.02°N, 118.27°W) on 7–8 October 2013 is employed for validating the aforementioned analysis. Under the selected background ionosphere dataset, the temporal-spatial background ionosphere variation can give rise to a relative azimuth shift of dozens of meters at most, and even the complete decorrelation in the InSAR pair. Moreover, the produced interferometric phase screen error corresponds to a deformation measurement error of more than 0.2 m at most, even in a not severely impacted area.
机译:L波段地球同步合成孔径雷达(GEO SAR)差分干涉仪系统(D-InSAR)将明显受到背景电离层的影响,这将引起SAR干涉仪(InSAR)对的相对图像偏移和去相关,并引起干涉图中的干涉相屏蔽误差。然而,背景电离层在GEO SAR的长积分时间(数百至数千秒)和广泛的成像场景(1000 km级别)内变化。结果,在低地球轨道(LEO)SAR中使用的常规时空不变背景电离层模型(即冻结模型)不再有效。为了解决这个问题,我们首先构造了一个时空背景电离层变化模型,然后从理论上分析了它对重复轨道GEO的影响,包括相对图像偏移和GEO InSAR对的去相关,以及干涉相屏蔽误差。 D-InSAR处理。相关的影响高度取决于背景电离层参数(恒定的总电子含量(TEC)分量,以及相对于方位角时间的TEC的时间一阶和时间二阶导数),信号带宽和积分时间。最后,2013年10月7日至8日在瓜达卢佩岛(29.02°N,118.27°W)的背景电离层数据被用于验证上述分析。在选定的背景电离层数据集下,时空背景电离层变化最多可引起数十米的相对方位角偏移,甚至会引起InSAR对中的完全解相关。此外,即使在未受到严重影响的区域中,所产生的干涉式相位屏蔽误差也对应于最多大于0.2 m的变形测量​​误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号