首页> 外文期刊>Neurology: Genetics >Molecular pathogenesis of human CD59 deficiency
【24h】

Molecular pathogenesis of human CD59 deficiency

机译:人类CD59缺乏症的分子发病机制

获取原文
       

摘要

Objective To characterize all 4 mutations described for CD59 congenital deficiency. Methods The 4 mutations, p.Cys64Tyr, p.Asp24Val, p.Asp24Valfs*, and p.Ala16Alafs*, were described in 13 individuals with CD59 malfunction. All 13 presented with recurrent Guillain-Barré syndrome or chronic inflammatory demyelinating polyneuropathy, recurrent strokes, and chronic hemolysis. Here, we track the molecular consequences of the 4 mutations and their effects on CD59 expression, localization, glycosylation, degradation, secretion, and function. Mutants were cloned and inserted into plasmids to analyze their expression, localization, and functionality. Results Immunolabeling of myc-tagged wild-type (WT) and mutant CD59 proteins revealed cell surface expression of p.Cys64Tyr and p.Asp24Val detected with the myc antibody, but no labeling by anti-CD59 antibodies. In contrast, frameshift mutants p.Asp24Valfs* and p.Ala16Alafs* were detected only intracellularly and did not reach the cell surface. Western blot analysis showed normal glycosylation but mutant-specific secretion patterns. All mutants significantly increased MAC-dependent cell lysis compared with WT. In contrast to CD59 knockout mice previously used to characterize phenotypic effects of CD59 perturbation, all 4 hCD59 mutations generate CD59 proteins that are expressed and may function intracellularly (4) or on the cell membrane (2). None of the 4 CD59 mutants are detected by known anti-CD59 antibodies, including the 2 variants present on the cell membrane. None of the 4 inhibits membrane attack complex (MAC) formation. Conclusions All 4 mutants generate nonfunctional CD59, 2 are expressed as cell surface proteins that may function in non–MAC-related interactions and 2 are expressed only intracellularly. Distinct secretion of soluble CD59 may have also a role in disease pathogenesis. Complement activation triggers membrane attack complex (MAC) assembly to form pores in cell membrane lipid bilayers of susceptible bacteria. 1 However, unregulated MAC formation may cause host tissue damage. 2 The glycosyl phosphatidylinositol (GPI)-anchored cell surface membrane glycoprotein CD59 inhibits the final step of MAC formation to protect host cells from MAC-mediated injury. 3 Several mutations in the CD59 -coding sequence are known in human patients ( figure 1A ). We and others have previously reported of 13 patients 4 , – 11 aged 1–4.5 years who suffered from chronic hemolysis and recurrent episodes of Guillain-Barré syndrome (GBS)-like disease from early infancy, suggesting chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and recurrent strokes (table e-1, links.lww.com/NXG/A87 ). The mutations included p.Cys64Tyr, p.Asp24Val, p.Asp24Valfs*, and p.Ala16Alafs*, all leading to CD59 loss of function. In all mutations, no surface protein was detected by anti-CD59 antibody staining. We were interested, in the current study, to verify whether indeed no proteins were produced, whether any proteins that were produced reached the membrane, and whether proteins or truncated proteins exist intracellularly or secreted outside the cells. These potential differences may have functional implications and clinical manifestations. Open in a separate window Figure 1 Sequence and structure of CD59 WT and mutants (A) The sequences of WT CD59, point mutations Cys64Tyr and Asp24Val, and frameshift mutations Asp24Valfs* and Ala16Alafs * : The mature membrane surface CD59 primary sequence consists of 77 residues after removal of a 25-residue N-terminal signal sequence and a C-terminal GPI-anchoring signal (not shown). Colored arrows and boxes represent β-strands and α-helices, respectively, as observed in WT CD59 (see B). Point mutations are marked with an asterisk. The sequence of the 2 frameshift mutants reveals significantly shortened proteins that lack most of the CD59 sequence, in particular the GPI-anchoring signal. (B) The structure of CD59 highlights the vicinity of the point mutations to known sites of activity and interaction. The mutated Cys64 and Asp24 positions are highlighted as spheres and labeled. The 3 characterized interfaces of CD59 are marked by numbered crescents: (1) The classic site characterized originally described by Bodian et al. 21 with the central Trp40 residue shown in sticks, (2) a loop spanning residues 20–24 that modulates CD59 activity 20 (colored in white), and (3) the edge β-strand that interacts with ILY 18 (to the left of the crescent). Disulfide bridges that stabilize CD59 are shown in sticks. Two solved structures (2j8b and 2uwr) are shown, highlighting the relative flexibility of the C-terminal helix (colored in magenta). (C) The frameshift mutants contain only a small part of the original CD59 sequence: The structure of CD59 is shown, with the region with a sequence in common with the Ala16Alafs * and Asp24Valfs * mutants colored in yellow and yellow-white, respectively. The I-TASSER model for the Asp24Valfs * sequence aligns 2 additio
机译:目的表征特征性CD59先天性缺陷的所有4种突变。方法在13名CD59机能障碍患者中描述了p.Cys64Tyr,p.Asp24Val,p.Asp24Valfs *和p.Ala16Alafs *这4个突变。所有13例均表现为复发性格林-巴利综合征或慢性炎症性脱髓鞘性多发性神经病,中风复发和慢性溶血。在这里,我们跟踪这4个突变的分子后果及其对CD59表达,定位,糖基化,降解,分泌和功能的影响。将突变体克隆并插入质粒以分析其表达,定位和功能。结果标记myc标记的野生型(WT)和突变CD59蛋白的免疫标记揭示了用myc抗体检测到的p.Cys64Tyr和p.Asp24Val的细胞表面表达,但没有被抗CD59抗体标记。相比之下,移码突变体p.Asp24Valfs *和p.Ala16Alafs *仅在细胞内被检测到,没有到达细胞表面。蛋白质印迹分析显示正常糖基化,但突变体特异性分泌模式。与WT相比,所有突变体均显着增加了MAC依赖性细胞裂解。与以前用来表征CD59干扰的表型效应的CD59基因敲除小鼠相反,所有4种hCD59突变均产生表达的CD59蛋白,并可能在细胞内(4)或在细胞膜上起作用(2)。 4种CD59突变体均未通过已知的抗CD59抗体检测到,包括存在于细胞膜上的2种变异体。 4种都不能抑制膜攻击复合物(MAC)的形成。结论所有4个突变体均产生无功能的CD59,2个表达为可能在非MAC相关相互作用中起作用的细胞表面蛋白,而2个仅在细胞内表达。可溶性CD59的不同分泌可能在疾病发病机理中也有作用。补体激活触发膜攻击复合物(MAC)组装,在易感细菌的细胞膜脂质双层中形成孔。 1但是,MAC形成不受控制可能会导致宿主组织损伤。 2糖基磷脂酰肌醇(GPI)锚定的细胞表面膜糖蛋白CD59抑制了MAC形成的最终步骤,从而保护宿主细胞免受MAC介导的损伤。 3在人类患者中,CD59编码序列中的一些突变是已知的(图1A)。我们和其他人以前曾报道过13例患者,年龄在1至4.5岁之间,年龄在4至– 11岁之间,患有慢性溶血和婴儿早期反复发作的格林-巴利综合征(GBS)样疾病,提示慢性炎症性脱髓鞘性多发性神经根神经病(CIDP),和复发性中风(表e-1,links.lww.com / NXG / A87)。突变包括p.Cys64Tyr,p.Asp24Val,p.Asp24Valfs *和p.Ala16Alafs *,均导致CD59功能丧失。在所有突变中,抗CD59抗体染色均未检测到表面蛋白。在当前的研究中,我们感兴趣的是验证是否确实没有产生蛋白质,是否有产生的蛋白质到达膜,以及蛋白质或截短的蛋白质是否存在于细胞内或分泌到细胞外。这些潜在的差异可能具有功能暗示和临床表现。在单独的窗口中打开图1 CD59 WT和突变体的序列和结构(A)WT CD59的序列,点突变Cys64Tyr和Asp24Val以及移码突变Asp24Valfs *和Ala16Alafs *:成熟的膜表面CD59主要序列由77个残基组成除去25个残基的N端信号序列和C端GPI锚定信号后(未显示)。彩色箭头和方框分别代表WT CD59中的β链和α螺旋(参见B)。点突变用星号标记。 2个移码突变体的序列揭示了明显缩短的蛋白,这些蛋白缺少大多数CD59序列,尤其是GPI锚定信号。 (B)CD59的结构突出了点突变到已知活动和相互作用位点的附近。突变的Cys64和Asp24位置以球形突出显示并标记。 CD59的3个特征界面用新月形标记:(1)Bodian等人最初描述的经典位点。图21中的中心Trp40残基显示在条状图中;(2)一个跨越残基20–24的环,可调节CD59活性20(白色),以及(3)与ILY 18相互作用的边缘β链(在图的左侧)新月)。棒中显示了稳定CD59的二硫键。显示了两个已解析的结构(2j8b和2uwr),突出显示了C末端螺旋线的相对柔韧性(洋红色)。 (C)移码突变体仅包含原始CD59序列的一小部分:显示了CD59的结构,该区域的序列与Ala16Alafs *和Asp24Valfs *突变体分别以黄色和黄白色着色。 Asp24Valfs的I-TASSER模型*序列对齐2个加法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号