...
首页> 外文期刊>Nanoscale Research Letters >Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography
【24h】

Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography

机译:基于AFM尖端的动态犁刻蚀技术在聚合物薄膜上制备高通量纳米坑

获取原文
           

摘要

We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100?μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100?μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65–80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800–5800 pits can be obtained in 1?s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.
机译:我们表明,基于原子力显微镜(AFM)尖端的动态犁光刻(DPL)方法可用于制造具有高产量的纳米级凹坑。该方法依赖于在攻丝模式下以相对较大的速度在样品表面上进行刮擦,这是造成相邻凹坑分离距离的原因。使用类金刚石碳涂层尖端在聚甲基丙烯酸甲酯(PMMA)薄膜上进行划痕测试。结果表明,100μm/ s是刮擦速度的临界值。当刮擦速度大于100μm/ s时,会产生凹坑结构。相反,可以以小于临界值的速度形成纳米凹槽。由于在尖端与样品的一种相互作用中难以通过施加高频负载和低能耗来破坏玻璃态聚合物的分子链,因此一个凹坑需要达到65-80的穿透深度。随后,对凹坑的形成过程进行了详细分析,包括三个阶段:弹性变形,塑性变形和堆积过程中的爬升。特别是,使用此建议的方法可以在1?s内获得4800-5800个凹坑。提出的实验和理论分析完全确定了该方法有效制造凹坑的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号