...
首页> 外文期刊>Microbial Cell Factories >Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw
【24h】

Overexpression of an exotic thermotolerant β-glucosidase in trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw

机译:里氏木霉中外源耐热β-葡萄糖苷酶的过表达及其在大麦秸秆中的纤维素分解活性和糖化作用的显着提高

获取原文

摘要

Background Trichoderma reesei is a widely used industrial strain for cellulase production, but its low yield of β-glucosidase has prevented its industrial value. In the hydrolysis process of cellulolytic residues by T. reesei, a disaccharide known as cellobiose is produced and accumulates, which inhibits further cellulases production. This problem can be solved by adding β-glucosidase, which hydrolyzes cellobiose to glucose for fermentation. It is, therefore, of high vvalue to construct T. reesei strains which can produce sufficient β-glucosidase and other hydrolytic enzymes, especially when those enzymes are capable of tolerating extreme conditions such as high temperature and acidic or alkali pH. Results We successfully engineered a thermostable β-glucosidase gene from the fungus Periconia sp. into the genome of T. reesei QM9414 strain. The engineered T. reesei strain showed about 10.5-fold (23.9?IU/mg) higher β-glucosidase activity compared to the parent strain (2.2?IU/mg) after 24?h of incubation. The transformants also showed very high total cellulase activity (about 39.0 FPU/mg) at 24?h of incubation whereas the parent strain almost did not show any total cellulase activity at 24?h of incubation. The recombinant β-glucosidase showed to be thermotolerant and remains fully active after two-hour incubation at temperatures as high as 60°C. Additionally, it showed to be active at a wide pH range and maintains about 88% of its maximal activity after four-hour incubation at 25°C in a pH range from 3.0 to 9.0. Enzymatic hydrolysis assay using untreated, NaOH, or Organosolv pretreated barley straw as well as microcrystalline cellulose showed that the transformed T. reesei strains released more reducing sugars compared to the parental strain. Conclusions The recombinant T. reesei overexpressing Periconia sp. β-glucosidase in this study showed higher β-glucosidase and total cellulase activities within a shorter incubation time (24?h) as well as higher hydrolysis activity using biomass residues. These features suggest that the transformants can be used for β-glucosidase production as well as improving the biomass conversion using cellulases.
机译:背景技术里氏木霉(Trichoderma reesei)是纤维素酶生产中广泛使用的工业菌株,但是其低产量的β-葡萄糖苷酶阻碍了其工业价值。在里氏木霉的纤维素分解残基的水解过程中,产生并积累了称为纤维二糖的二糖,该二糖会进一步抑制纤维素酶的产生。通过添加β-葡萄糖苷酶可以解决该问题,该酶将纤维二糖水解为葡萄糖进行发酵。因此,构建能够产生足够的β-葡萄糖苷酶和其他水解酶的里氏木霉菌株具有很高的v值,尤其是当那些酶能够耐受极端条件,例如高温和酸性或碱性pH时。结果我们成功地从真菌Periconia sp。设计了一个热稳定的β-葡萄糖苷酶基因。进入里氏木霉QM9414菌株的基因组。孵育24小时后,与亲本菌株(2.2?IU / mg)相比,改造的里氏木霉菌株显示出高出约10.5倍(23.9?IU / mg)的β-葡萄糖苷酶活性。在培养24小时时,转化体还显示出非常高的总纤维素酶活性(约39.0 FPU / mg),而在培养24小时时,亲本菌株几乎没有显示出任何总纤维素酶活性。重组β-葡萄糖苷酶显示出耐热性,并且在高达60°C的温度下孵育2小时后仍保持完全活性。另外,它在广泛的pH范围内表现出活性,并且在25°C在3.0至9.0的pH范围内孵育4小时后,仍能维持其最大活性的约88%。使用未经处理的NaOH或Organosolv预处理的大麦秸秆以及微晶纤维素的酶促水解分析表明,与亲本菌株相比,转化的里氏木霉菌株释放了更多的还原糖。结论重组里氏木霉过表达Periconia sp。本研究中的β-葡萄糖苷酶在较短的孵育时间(24?h)内显示出较高的β-葡萄糖苷酶和总纤维素酶活性,并利用生物质残基具有较高的水解活性。这些特征表明,转化体可用于生产β-葡糖苷酶以及使用纤维素酶改善生物量转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号