首页> 外文期刊>Microbes and Environments >Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity
【24h】

Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity

机译:锑化学形态对土壤微生物群落结构和亚砷酸氧化活性的影响

获取原文
           

摘要

In the present study, the influence of the co-contamination with various chemical forms of antimony (Sb) with arsenite (As[III]) on soil microbial communities was investigated. The oxidation of As(III) to As(V) was monitored in soil columns amended with As(III) and three different chemical forms of Sb: antimony potassium tartrate (Sb[III]-tar), antimony(III) oxide (Sb2O3), and potassium antimonate (Sb[V]). Soil microbial communities were examined qualitatively and quantitatively using 16S rDNA- and arsenite oxidase gene ( aioA )-targeted analyses. Microbial As(III) oxidation was detected in all soil columns and 90–100% of added As(III) (200 μmol L?1) was oxidized to As(V) in 9 d, except in the Sb(III)-tar co-amendments that only oxidized 30%. 16S rDNA- and aioA -targeted analyses showed that the presence of different Sb chemical forms significantly affected the selection of distinct As(III)-oxidizing bacterial populations. Most of the 16S rRNA genes detected in soil columns belonged to Betaproteobacteria and Gammaproteobacteria , and some sequences were closely related to those of known As(III) oxidizers. Co-amendments with Sb(III)-tar and high concentrations of Sb2O3 significantly increased the ratios of aioA -possessing bacterial populations, indicating the enrichment of As(III) oxidizers resistant to As and Sb toxicity. Under Sb co-amendment conditions, there was no correlation between aioA gene abundance and the rates of As(III) oxidation. Collectively, these results demonstrated that the presence of different Sb chemical forms imposed a strong selective pressure on the soil bacterial community and, thus, the co-existing metalloid is an important factor affecting the redox transformation of arsenic in natural environments.
机译:在本研究中,调查了各种化学形式的锑(Sb)与亚砷酸盐(As [III])共同污染对土壤微生物群落的影响。在用As(III)和Sb的三种化学形式修正的土壤柱中监测As(III)氧化为As(V):酒石酸锑钾(Sb [III] -tar),氧化锑(III)(Sb 2 O 3 )和锑酸钾(Sb [V])。使用16S rDNA和亚砷酸盐氧化酶基因(aioA)靶向分析对土壤微生物群落进行了定性和定量分析。在所有土壤柱中均检测到了微生物As(III)的氧化,并且在9 d内90%至100%的As(III)(200μmolL ?1 )被氧化为As(V)。只能氧化30%的Sb(III)-tar共修正。针对16S rDNA和aioA的分析表明,不同Sb化学形式的存在显着影响不同的As(III)氧化细菌群体的选择。在土壤柱中检测到的大多数16S rRNA基因属于Betaproteobacteria和Gammaproteobacteria,并且某些序列与已知的As(III)氧化剂紧密相关。与Sb(III)-tar和高浓度Sb 2 O 3 的共修正显着提高了具有aioA的细菌种群的比率,表明As(III)的富集)具有抗As和Sb毒性的氧化剂。在Sb共修正条件下,aioA基因丰度与As(III)氧化速率之间没有相关性。总的来说,这些结果表明,不同的锑化学形式的存在对土壤细菌群落施加了强大的选择压力,因此,共存的准金属是影响砷在自然环境中氧化还原转化的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号